COVID-19 is a respiratory tract infection that can range from being mild to fatal. In India, the countrywide lockdown has been imposed since 24th march 2020, and has got multiple extensions with different guidelines for each phase. Among various models of epidemiology, we use the SIR(D) model to analyze the extent to which this multi-phased lockdown has been active in ‘flattening the curve’ and lower the threat. Analyzing the effect of lockdown on the infection may provide a better insight into the evolution of epidemic while implementing the quarantine procedures as well as improving the healthcare facilities. For accurate modelling, incorporating various parameters along with sophisticated computational facilities are required. Parallel to SIRD modelling, we tend to compare it with the Ising model and derive a quantum circuit that incorporates the rate of infection and rate of recovery, etc as its parameters. The probabilistic plots obtained from the circuit qualitatively resemble the shape of the curve for the spread of Coronavirus. We also demonstrate how the curve flattens when the lockdown is imposed. This kind of quantum computational approach can be useful in reducing space and time complexities of a huge amount of information related to the epidemic.
COVID-19 is a respiratory tract infection that can range from being mild to fatal. In India, the countrywide lockdown has been imposed since 24th march, 2020, and has got multiple extensions with different guidelines for each phase. Among various models of epidemiology, we use the SIR(D) model to analyze the extent to which this multi-phased lockdown has been active in `flattening the curve' and lower the threat. Analyzing the effect of lockdown on the infection may give us a better insight into the evolution of epidemic while implementing the quarantine procedures as well as improving the healthcare facilities. For accurate modelling, incorporating various parameters along with sophisticated computational facilities, are required. Parallel to SIRD modelling, we tend to compare it with the Ising model and derive a quantum circuit that incorporates the rate of infection and rate of recovery, etc as its parameters. The probabilistic plots obtained from the circuit qualitatively resemble the shape of the curve for the spread of Coronavirus. We also demonstrate how the curve flattens when the lockdown is imposed. This kind of quantum computational approach can be useful in reducing space and time complexities of a huge amount of information related to the epidemic.
The application of quantum computation and information in robotics has caught the attention of researchers off late. The field of robotics has always put its effort on the minimization of the space occupied by the robot, and on making the robot 'smarter. 'The smartness of a robot is its sensitivity to its surroundings and the user input and its ability to react upon them desirably. Quantum phenomena in robotics make sure that the robots occupy less space and the ability of quantum computation to process the huge amount of information effectively, consequently making the robot smarter. Braitenberg vehicle is a simple circuited robot that moves according to the input that its sensors receive. Building upon that, we propose a quantum robot vehicle that is 'smart' enough to understand the complex situations more than that of a simple Braitenberg vehicle and navigate itself as per the obstacles present. It can detect an obstacle-free path and can navigate itself accordingly. It also takes input from the user when there is more than one free path available. When left with no option on the ground, it can airlift itself off the ground. As these vehicles sort of 'react to the surrounding conditions, this idea can be used to build artificial life and genetic algorithms, space exploration and deep-earth exploration probes, and a handy tool in defense and intelligence services.
The one-dimensional Ising model with its connections to several physical concepts plays a vital role in comprehension of several principles, phenomena and numerical methods. The Hamiltonian of a coupled one-dimensional dissipative spin system in the presence of magnetic field can be obtained from the Ising model. We simulate the above Hamiltonian by designing a quantum circuit with precise gate measurement and execute with the IBMQ experience platform through different [Formula: see text] states with controlled energy separation where we can check quantum synchronization in a dissipative lattice system. Our result shows the relation between various entangled states, the relation between the different energy separation ([Formula: see text]) with the spin–spin coupling ([Formula: see text]) in the lattice, along with fidelity calculations for several iterations of the model used. We also estimate the ground and first excited energy states of Ising-Hamiltonian using VQE algorithm and investigate the lowest energy values varying the number of layers of ansatz.
The one-dimensional Ising model with its connections to several physical concepts plays a vital role in comprehension of several principles, phenomena and numerical methods. The Hamiltonian of a coupled one-dimensional dissipative spin system in the presence of magnetic field can be obtained from the Ising model. We simulate the above Hamiltonian by designing a quantum circuit with precise gate measurement and execute with the IBMQ experience platform through different N states with controlled energy separation where we can check quantum synchronization in a dissipative lattice system. Our result shows the relation between various entangled states, the relation between the different energy separation (ω) with the spin-spin coupling (λ) in the lattice, along with fidelity calculations for several iterations of the model used. We also estimate the ground and first excited energy states of Ising-Hamiltonian using VQE algorithm and investigate the lowest energy values varying the number of layers of ansatz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.