Heat stroke-induced death is a major killer worldwide. Mice were subjected to acute heat stress by exposing them to whole-body hyperthermia (WBH) treatment and were used as a model to study heat stroke. Administration of L-arginine (L-arg, 120 mg/kg, i.p) 2 h after the cessation of WBH rescued the mice from heat-induced death and reduced the hypothermia. Heat shock protein 70 levels in the liver were increased significantly in heat-stressed mice administered L-arg compared with the heat-stressed group. WBH induced apoptosis, as indicated by DNA fragmentation, and increased levels of p53 and caspase-3 activity, which were significantly reduced by the administration of L-arg. The levels of inducible nitric oxide synthase in the liver, nitrite, and inflammatory cytokines like interleukin 1beta and tumor necrosis factor-alpha in the serum increased in WBH-treated mice. The levels of the above markers of heat stress significantly decreased in L-arg-treated mice. Kinin-B1 receptor (kinin-B1R) in cardiac tissue that is upregulated in heat stressed mice was significantly lower in L-arg-administered mice. These data suggest the potential use of L-arg, a nonessential amino acid that is used as an enteral diet supplement, to treat heat stroke-related injury when administered at the appropriate dose and time.
The aim of the present study was to investigate the protective efficacy of l-arginine in mitigating the injury induced by 2 Gy of total-body gamma radiation (TBI). Mice exposed to radiation (TBI group) had significantly decreased spleen weight, splenocyte numbers and bone marrow cellularity. Administration of l-arginine 2 h after TBI (TBI + l-arginine group) was effective in reducing the radiation-induced depletion of spleen and bone marrow cellularity but was not effective when administered before TBI (l-arginine + TBI group). The radiation-induced decrease in Con A-induced spleen cell proliferation, specific antibody response of spleen B cells to sheep red blood cells, and spleen RNA content was reversed in mice in the TBI + l-arginine group. The radiation-induced increase in serum TNF-alpha levels, serum nitrate/nitrite (NOx) levels, spleen DNA fragmentation, spleen nitric oxide synthase (NOS) activity, spleen inducible NOS (iNOS) activity, and hepatic iNOS activity was reversed in mice in the TBI + l-arginine group. l-Arginine administered before TBI could not reverse these changes. Mice in the TBI + l-arginine group had significantly increased spleen arginase activity compared to mice from either the TBI or l-arginine + TBI group. The results suggest the importance of the time of administration of l-arginine and the l-arginine pathway in mitigating the radiation-induced host immune dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.