A new probability distribution, the xgamma distribution, is proposed and studied. The distribution is generated as a special finite mixture of exponential and gamma distributions and hence the name proposed. Various mathematical, structural, and survival properties of the xgamma distribution are derived, and it is found that in many cases the xgamma has more flexibility than the exponential distribution. To evaluate the comparative behavior, stochastic ordering of the distribution is studied. To estimate the model parameter, the method of moment and the method of maximum likelihood estimation are proposed. A simulation algorithm to generate random samples from the xgamma distribution is indicated along with a simulation study. A real life dataset on the remission times of patients receiving an analgesic is analyzed, and it is found that the xgamma model provides better fit to the data as compared to the exponential model.
In this paper, we present a new family, depending on additive Weibull random variable as a generator, called the generalized additive Weibull generated-family (GAW-G) of distributions with two extra parameters. The proposed family involves several of the most famous classical distributions as well as the new generalized Weibull-G family which already accomplished by Cordeiro et al. (2015). Four special models are displayed. The expressions for the incomplete and ordinary moments, quantile, order statistics, mean deviations, Lorenz and Benferroni curves are derived. Maximum likelihood method of estimation is employed to obtain the parameter estimates of the family. The simulation study of the new models is conducted. The efficiency and importance of the new generated family is examined through real data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.