In the early months of the pandemic, most reported cases and deaths due to COVID-19 occurred in high-income countries. However, insufficient testing could have led to an underestimation of true infections in many low-and middle-income countries. As confirmed cases increase, the ultimate impact of the pandemic on individuals and communities in low-and middle-income countries is uncertain. We therefore propose research in three broad areas as urgently needed to inform responses in low-and middle-income countries: transmission patterns of SARS-CoV-2, the clinical characteristics of the disease, and the impact of pandemic prevention and response measures. Answering these questions will require a multidisciplinary approach led by local investigators and in some cases additional resources. Targeted research activities should be done to help mitigate the potential burden of COVID-19 in low-and middle-income countries without diverting the limited human resources, funding, or medical supplies from response activities.
The concept of community resilience has gained considerable attention in the global health discussions since the Ebola outbreak of West Africa in 2014–2015. However, there are no measurement models to quantify community resilience. Without measurement models, it is unclear how to test strategies for building community resilience or to describe their likely intended and unintended results and their impact on health outcomes. We propose a measurement model for community resilience with relevant constructs and indicators to measure these constructs. We conducted a scoping review, systematically searching, screening and selecting relevant articles from two bibliographic databases (PUBMED and Google Scholar) for literature using search terms such as “resilience”, “community resilience” and “health systems resilience”. We screened 500 papers, then completed a full text review of 112 identified as relevant based on their title and abstract. A total of 27 papers and reports were retained for analysis. We then aggregated and synthesised the various definitions of community resilience and the frameworks for understanding these definitions. We identified key constructs from these frameworks and organised these constructs into domains and sub-domains. We proposed indicators to capture aspects of these domains and sub-domains and operationalised these indicators as a measurement model for quantifying community resilience in health systems. We propose a model with 20 indicators to assess community resilience. These indicators tap into various constructs from different theoretical frameworks of community resilience and are useful for assessing the level of knowledge, financial resources, and human, social and physical capital that are needed (or lacking) to respond to any types of shock, including health shock at the community level. This is an initial attempt to describe a multilevel measurement model for quantifying community resilience. This model will help to guide the development and testing of strategies for strengthening community resilience and will require further work to assess its relevance, reliability and validity in different LMIC settings.
Background Ensuring the current public health workforce has appropriate competencies to fulfill essential public health functions is challenging in many low- and middle-income countries. The absence of an agreed set of core competencies to provide a basis for developing and assessing knowledge, skills, abilities, and attitudes contributes to this challenge. This study aims to identify the requisite core competencies for practicing health professionals in mid-level supervisory and program management roles to effectively perform their public health responsibilities in the resource-poor setting of Uttar Pradesh (UP), India. Methods We used a multi-step, interactive Delphi technique to develop an agreed set of public health competencies. A narrative review of core competency frameworks and key informant interviews with human resources for health experts in India were conducted to prepare an initial list of 40 competency statements in eight domains. We then organized a day-long workshop with 22 Indian public health experts and government officials, who added to and modified the initial list. A revised list of 54 competency statements was rated on a 5-point Likert scale. Aggregate statement scores were shared with the participants, who discussed the findings. Finally, the revised list was returned to participants for an additional round of ratings. The Wilcoxon matched-pairs signed-rank test was used to identify stability between steps, and consensus was defined using the percent agreement criterion. Results Stability between the first and second Delphi scoring steps was reached in 46 of the 54 statements. By the end of the second Delphi scoring step, consensus was reached on 48 competency statements across eight domains: public health sciences, assessment and analysis, policy and program management, financial management and budgeting, partnerships and collaboration, social and cultural determinants, communication, and leadership. Conclusions This study produced a consensus set of core competencies and domains in public health that can be used to assess competencies of public health professionals and revise or develop new training programs to address desired competencies. Findings can also be used to support workforce development by informing competency-based job descriptions for recruitment and performance management in the Indian context, and potentially can be adapted for use in resource-poor settings globally.
Background A biofilm is an extracellular polymeric substance (EPS) composed of polysaccharides, proteins, nucleic acids, and lipids that impede antibiotics and immune cells, thus providing a shielded environment for bacterial growth. Due to biofilm formation, some microbes can show up to 1000 fold increased resistance towards the antibiotics than the normal planktonic forms. The study was conducted to screen the crude extracts of medicinal plants used in Nepal for their in vitro antibiofilm activities. Methods Total phenolic and total flavonoid contents were determined by using a Folin-Ciocalteau reagent and aluminium trichloride method, respectively. Resazurin assay was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The initial antibiofilm activities and their inhibitory concentration (IC50) values were determined by the microtiter based modified crystal violet staining method. Results Out of 25 different plant extracts were used for the study, methanolic extracts of 20 plants showed a biofilm inhibition activity against five different strong biofilm producing Escherichia coli strains. Calotropis gigantea exhibited inhibition against all five different E. coli strains with IC50 values ranging from 299.7 ± 20.5 to 427.4 ± 2.7 μg/mL. Apart from that, Eclipta prostrata also showed biofilm formation inhibition, followed by Eupatorium adenophorum, Moringa oleifera, Ocimum tenuifolium, Oxalis lantifolia, Prunus persica, and Urtica parviflora. The extracts of C. gigantea, E. prostrata, Mangifera indica, O. tenuifolium, P. persica, and U. parviflora exhibited a moderate to poor MIC value ranging from 625 to 2500 μg/mL. The highest amount of phenolic content (TPC) was found in Acacia catechu followed by Morus alba, which was 38.9 and 25.1 mg gallic acid equivalents, respectively. The highest amount of flavonoid content was found in A. catechu followed by M. indica, which was 27.1 and 20.8 mg quercetin equivalents, respectively. Conclusion Extracts of C. gigantea, E. prostrata, P. persica, U. parviflora, and O. tenuifolium showed antibacterial as well as antibiofilm activity against pathogenic and strong biofilm producing E. coli. Thus, extracts or the pure compound from these medicinal plants could be used as antibiotics in the future.
Nitrogen (N) fertilizer is considered as one of the most important factors affecting growth and grain yield of hybrid maize. This study was conducted to determine the effects of different rates of nitrogen and varieties on growth and yield of hybrid maize in Lamahi Municipality, Dang, Nepal from June to October, 2019. Three levels of hybrid maize varieties (10V10, Rajkumar F1 and NMH-731) and four levels of nitrogen (160, 180, 200 and 220 kg N ha-1) were evaluated using two factorial randomized complete block design with three replications. The results showed that grain yield and yield attributing traits of hybrid maize varieties increased with the increasing level of nitrogen from 160 to 220 kg ha-1. The application of nitrogen @ 220 kg N ha-1 produced the highest grain yield (10.07 t ha-1), cob length (16.33 cm), no of rows per cob (14.97), no of grains per row (33.37), cob diameter (4.54), thousand grain weight (276.77 g), stover yield (12.91 t ha-1), biological yield (23.00 t ha-1), harvest index (43.80), gross return (NRs. 208940 ha-1), net return (NRs.104488 ha-1) and B:C ratio (2.001). The hybrid maize variety 10V10 produced the highest grain yield (9.35 t ha-1), net returns (NRs. 91740.66 ha-1) and B:C ratio (1.91) accompanied by the highest cob length (16.25 cm), and as number of grains per row (32.35) as compared to other varieties. This study suggested that maize production can be maximized by cultivating hybrid maize variety 10V10 with the use of 220 kg N ha-1 in inner Terai region of Nepal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.