We describe the construction and analysis of a genome-scale metabolic model representing a developing leaf cell of rice (Oryza sativa) primarily derived from the annotations in the RiceCyc database. We used flux balance analysis to determine that the model represents a network capable of producing biomass precursors (amino acids, nucleotides, lipid, starch, cellulose, and lignin) in experimentally reported proportions, using carbon dioxide as the sole carbon source. We then repeated the analysis over a range of photon flux values to examine responses in the solutions. The resulting flux distributions show that (1) redox shuttles between the chloroplast, cytosol, and mitochondrion may play a significant role at low light levels, (2) photorespiration can act to dissipate excess energy at high light levels, and (3) the role of mitochondrial metabolism is likely to vary considerably according to the balance between energy demand and availability. It is notable that these organelle interactions, consistent with many experimental observations, arise solely as a result of the need for mass and energy balancing without any explicit assumptions concerning kinetic or other regulatory mechanisms.
BackgroundAmong the vertebrates, teleost and urodele amphibians are capable of regenerating their central nervous system. We have used zebrafish as a model to study spinal cord injury and regeneration. Relatively little is known about the molecular mechanisms underlying spinal cord regeneration and information based on high density oligonucleotide microarray was not available. We have used a high density microarray to profile the temporal transcriptome dynamics during the entire phenomenon.ResultsA total of 3842 genes expressed differentially with significant fold changes during spinal cord regeneration. Cluster analysis revealed event specific dynamic expression of genes related to inflammation, cell death, cell migration, cell proliferation, neurogenesis, neural patterning and axonal regrowth. Spatio-temporal analysis of stat3 expression suggested its possible function in controlling inflammation and cell proliferation. Genes involved in neurogenesis and their dorso-ventral patterning (sox2 and dbx2) are differentially expressed. Injury induced cell proliferation is controlled by many cell cycle regulators and some are commonly expressed in regenerating fin, heart and retina. Expression pattern of certain pathway genes are identified for the first time during regeneration of spinal cord. Several genes involved in PNS regeneration in mammals like stat3, socs3, atf3, mmp9 and sox11 are upregulated in zebrafish SCI thus creating PNS like environment after injury.ConclusionOur study provides a comprehensive genetic blue print of diverse cellular response(s) during regeneration of zebrafish spinal cord. The data highlights the importance of different event specific gene expression that could be better understood and manipulated further to induce successful regeneration in mammals.
The native three dimensional structure of a single protein is determined by the physico chemical nature of its constituent amino acids. The twenty different types of amino acids, depending on their physico chemical properties, can be grouped into three major classeshydrophobic, hydrophilic and charged. We have studied the anatomy of the weighted and unweighted networks of hydrophobic, hydrophilic and charged residues separately for a large number of proteins. Our results show that the average degree of the hydrophobic networks has significantly larger value than that of hydrophilic and charged networks. The average degree of the hydrophilic networks is slightly higher than that of charged networks. The average strength of the nodes of hydrophobic networks is nearly equal to that of the charged network; whereas that of hydrophilic networks has smaller value than that of hydrophobic and charged networks. The average strength for each of the three types of networks varies with its degree. The average strength of a node in charged networks increases more sharply than that of the hydrophobic and hydrophilic networks. Each of the three types of networks exhibits the 'small-world' property. Our results further indicate that the all amino acids' networks and hydrophobic networks are of assortative type. While maximum of the hydrophilic and charged networks are of assortative type, few others have the characteristics of disassortative mixing of the nodes. We have further observed that all amino acids' networks and hydrophobic networks bear the signature of hierarchy; whereas the hydrophilic and charged networks do not have any hierarchical signature.
To find additional structural constraints (besides disordered segments) that regulate protein half-life in the cell, we herein assess the influence of native topology of monomeric and sequestration of oligomeric proteins into multimeric complexes in yeast, human, and mouse. Native topology acts as a molecular marker of globular protein's mechanical resistance and consequently captures their half-life variations on genome scale. Sequestration into multimeric complexes elongates oligomeric protein half-life in the cell, presumably by burying ubiquitinoylation sites and disordered segments required for proteasomal recognition. The latter effect is stronger for proteins associated with multiple complexes and for those binding early during complex self-assembly, including proteins that oligomerize with large proportions of surface buried. After gene duplication, diversification of topology and sequestration into non-identical sets of complexes alter half-lives of paralogous proteins during the course of evolution. Thus, native topology and sequestration into multimeric complexes reflect designing principles of proteins to regulate their half-lives.
BackgroundThe three-dimensional structure of a protein can be described as a graph where nodes represent residues and the strength of non-covalent interactions between them are edges. These protein contact networks can be separated into long and short-range interactions networks depending on the positions of amino acids in primary structure. Long-range interactions play a distinct role in determining the tertiary structure of a protein while short-range interactions could largely contribute to the secondary structure formations. In addition, physico chemical properties and the linear arrangement of amino acids of the primary structure of a protein determines its three dimensional structure. Here, we present an extensive analysis of protein contact subnetworks based on the London van der Waals interactions of amino acids at different length scales. We further subdivided those networks in hydrophobic, hydrophilic and charged residues networks and have tried to correlate their influence in the overall topology and organization of a protein.ResultsThe largest connected component (LCC) of long (LRN)-, short (SRN)- and all-range (ARN) networks within proteins exhibit a transition behaviour when plotted against different interaction strengths of edges among amino acid nodes. While short-range networks having chain like structures exhibit highly cooperative transition; long- and all-range networks, which are more similar to each other, have non-chain like structures and show less cooperativity. Further, the hydrophobic residues subnetworks in long- and all-range networks have similar transition behaviours with all residues all-range networks, but the hydrophilic and charged residues networks don’t. While the nature of transitions of LCC’s sizes is same in SRNs for thermophiles and mesophiles, there exists a clear difference in LRNs. The presence of larger size of interconnected long-range interactions in thermophiles than mesophiles, even at higher interaction strength between amino acids, give extra stability to the tertiary structure of the thermophiles. All the subnetworks at different length scales (ARNs, LRNs and SRNs) show assortativity mixing property of their participating amino acids. While there exists a significant higher percentage of hydrophobic subclusters over others in ARNs and LRNs; we do not find the assortative mixing behaviour of any the subclusters in SRNs. The clustering coefficient of hydrophobic subclusters in long-range network is the highest among types of subnetworks. There exist highly cliquish hydrophobic nodes followed by charged nodes in LRNs and ARNs; on the other hand, we observe the highest dominance of charged residues cliques in short-range networks. Studies on the perimeter of the cliques also show higher occurrences of hydrophobic and charged residues’ cliques.ConclusionsThe simple framework of protein contact networks and their subnetworks based on London van der Waals force is able to capture several known properties of protein structure as well as can unravel several new features....
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.