Internet of Things (IoT) and smart computing technologies have revolutionized every sphere of 21 st century humans. IoT technologies and the data driven services they offer were beyond imagination just a decade ago. Now, they surround us and influence a variety of domains such as automobile, smart home, healthcare, etc. In particular, the Agriculture and Farming industries have also embraced this technological intervention. Smart devices are widely used by a range of people from farmers to entrepreneurs. These technologies are used in a variety of ways, from finding real-time status of crops and soil moisture content to deploying drones to assist with tasks such as applying pesticide spray. However, the use of IoT and smart communication technologies introduce a vast exposure to cybersecurity threats and vulnerabilities in smart farming environments. Such cyber attacks have the potential to disrupt the economies of countries that are widely dependent on agriculture. In this paper, we present a holistic study on security and privacy in a smart farming ecosystem. The paper outlines a multi layered architecture relevant to the precision agriculture domain and discusses the security and privacy issues in this dynamic and distributed cyber physical environment. Further more, the paper elaborates on potential cyber attack scenarios and highlights open research challenges and future directions. INDEX TERMS Security, privacy, smart farming, precision agriculture, cloud computing, edge computing, cyber physical systems, IoT, artificial intelligence (AI), machine learning, layered architecture.
In order to secure vital personal and organizational system we require timely intelligence on cybersecurity threats and vulnerabilities. Intelligence about these threats is generally available in both overt and covert sources like the National Vulnerability Database, CERT alerts, blog posts, social media, and dark web resources. Intelligence updates about cybersecurity can be viewed as temporal events that a security analyst must keep up with so as to secure a computer system. We describe CyberTwitter, a system to discover and analyze cybersecurity intelligence on Twitter and serve as a OSINT (Open-source intelligence) source. We analyze real time information updates, in form of tweets, to extract intelligence about various possible threats. We use the Semantic Web RDF to represent the intelligence gathered and SWRL rules to reason over extracted intelligence to issue alerts for security analysts.
After Action Reports (AARs) provide incisive analysis of cyber-incidents. Extracting cyberknowledge from these sources would provide security analysts with credible information, which they can use to detect or find patterns indicative of a cyber-attack. In this paper, we describe a system to extract information from AARs, aggregate the extracted information by fusing similar entities together, and represent that extracted information in a Cybersecurity Knowledge Graph (CKG). We extract entities by building a customized named entity recognizer called 'Malware Entity Extractor' (MEE). We then build a neural network to predict how pairs of 'malware entities' are related to each other. When we have predicted entity pairs and the relationship between them, we assert the 'entity-relationship set' in a CKG. Our next step in the process is to fuse similar entities, to improve our CKG. This fusion helps represent intelligence extracted from multiple documents and reports. The fused CKG has knowledge from multiple AARs, with relationships between entities extracted from separate reports. As a result of this fusion, a security analyst can execute queries and retrieve better answers on the fused CKG, than a knowledge graph with no fusion. We also showcase various reasoning capabilities that can be leveraged by a security analyst using our fused CKG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.