Within the lumbar sympathetic ganglia of guinea pigs, the endings of different populations of neuropeptide-containing preganglionic neurons form well-defined pericellular baskets of boutons around target neurons in specific functional pathways. We have used multiple-labelling immunofluorescence, confocal microscopy, and ultrastructural immunocytochemistry to investigate synaptic organisation within pericellular baskets labelled for immunoreactivity to calcitonin gene-related peptide (CGRP), substance P (SP), or the pro-enkephalin-derived peptide, met-enkephalin-arg-gly-leu (MERGL) in relation to their target neurons. Different functional populations of neurons, identified by their neurochemical profile, showed a significant degree of spatial clustering and predicted well the distribution of specific classes of pericellular baskets. Most of the boutons in a basket were completely surrounded by Schwann cell processes and did not form synapses. The synapses that were present were made mostly onto dendrites enclosed by the Schwann cell sheath surrounding the neuron within the basket. These dendrites probably originated from neurochemically similar neighbouring neurons. Nevertheless, some of the boutons in the baskets did form synapses with the cell body or proximal dendrites of the neuron they surrounded. Occasionally, cell bodies received a relatively high number of synapses and close appositions from boutons in a pericellular basket. Synaptic convergence of two immunohistochemically distinct types of preganglionic inputs was found in baskets of SP-immunoreactive or MERGL-immunoreactive, but not CGRP-immunoreactive, boutons. Taken together, our results show that the appearance of pericellular baskets is primarily due to the packing of the target neurons. The grouping of functionally similar classes of neurons with their pathway-specific projections of peptide-containing preganglionic neurons suggests that peptides could exert their effects in relatively well-defined zones within the ganglia.
Neurons in prevertebral sympathetic ganglia receive convergent synaptic inputs from peripheral enteric neurons in addition to inputs from spinal preganglionic neurons. Although all inputs are functionally cholinergic, inputs from these two sources have distinctive neurochemical and functional profiles. We used multiple-labeling immunofluorescence, quantitative confocal microscopy, ultrastructural immunocytochemistry, and intracellular electrophysiologic recordings to examine whether populations of inputs to the guinea pig coeliac ganglion express different levels of synaptic proteins that could influence synaptic strength. Boutons of enteric intestinofugal inputs, identified by immunoreactivity to vasoactive intestinal peptide, showed considerable heterogeneity in their immunoreactivity to synaptosome-associated protein of 25 kDa (SNAP-25), synapsin, synaptophysin, choline acetyltransferase, and vesicular acetylcholine transporter. Mean levels of immunoreactivity to these proteins were significantly lower in terminals of intestinofugal inputs compared with terminals of spinal preganglionic inputs. Nevertheless, many boutons with undetectable levels of SNAP-25 immunoreactivity formed morphologically normal synapses with target neurons. Treatment with botulinum neurotoxin type A (20-50 nM for 2 hours in vitro) generated significant cleavage of SNAP-25 and produced similar dose- and time-dependent inhibitions of synaptic transmission from all classes of inputs, regardless of their mean level of SNAP-25 expression. The simplest interpretation of these results is that only synaptic boutons with detectable levels of SNAP-25 immunoreactivity contribute significantly to fast cholinergic transmission. Consequently, the low synaptic strength of intestinofugal inputs to final motor neurons in sympathetic pathways may be due in part to the low proportion of their boutons that express SNAP-25 and other synaptic proteins.
The authors serially sectioned seven dye-filled neuronal somata and more than 1.6 mm of their dendrites from the lumbar sympathetic ganglia of guinea pigs and examined them ultrastructurally to determine the distribution of preganglionic synaptic inputs to their dendrites and cell bodies. Most of the surface of the neurons was covered with Schwann cells. Apposing boutons were rare, with an average density of one axosomatic bouton per 125 microm2 of somatic membrane and one axodendritic bouton per 25 microm of dendrite. Many dendritic segments that were more than 50 microm long completely lacked any apposing boutons. Although the average density of apposing boutons was low, local densities could be high, so that clusters of up to four adjacent boutons occurred on cell bodies and dendrites alike. The spatial arrangement of the apposing boutons for each of the cells examined here was not significantly different from a random distribution. Consequently, the number of apposing boutons observed for any neuron was simply proportional to the amount of neuronal surface sampled in the serial section run. About 50% of boutons directly apposing the neurons lacked any detectable presynaptic specialisations. When they were present, the presynaptic densities had a mean length of about 220 nm, with no difference between boutons that made axosomatic or axodendritic appositions. By applying these data to complete reconstructions of the dendritic trees of dye-filled sympathetic neurons at the light microscopic level, the authors estimated that few neurons in the lumbar sympathetic chain of guinea pigs would receive more than 200 synapses or apposing boutons and that many of them would receive less than 100 synapses. Up to 50% of these boutons would be predicted to make axosomatic contacts. These new observations provide a strong morphological framework for a better understanding of how sympathetic final motor neurons process their preganglionic synaptic inputs.
The authors serially sectioned seven dye-filled neuronal somata and more than 1.6 mm of their dendrites from the lumbar sympathetic ganglia of guinea pigs and examined them ultrastructurally to determine the distribution of preganglionic synaptic inputs to their dendrites and cell bodies. Most of the surface of the neurons was covered with Schwann cells. Apposing boutons were rare, with an average density of one axosomatic bouton per 125 microm2 of somatic membrane and one axodendritic bouton per 25 microm of dendrite. Many dendritic segments that were more than 50 microm long completely lacked any apposing boutons. Although the average density of apposing boutons was low, local densities could be high, so that clusters of up to four adjacent boutons occurred on cell bodies and dendrites alike. The spatial arrangement of the apposing boutons for each of the cells examined here was not significantly different from a random distribution. Consequently, the number of apposing boutons observed for any neuron was simply proportional to the amount of neuronal surface sampled in the serial section run. About 50% of boutons directly apposing the neurons lacked any detectable presynaptic specialisations. When they were present, the presynaptic densities had a mean length of about 220 nm, with no difference between boutons that made axosomatic or axodendritic appositions. By applying these data to complete reconstructions of the dendritic trees of dye-filled sympathetic neurons at the light microscopic level, the authors estimated that few neurons in the lumbar sympathetic chain of guinea pigs would receive more than 200 synapses or apposing boutons and that many of them would receive less than 100 synapses. Up to 50% of these boutons would be predicted to make axosomatic contacts. These new observations provide a strong morphological framework for a better understanding of how sympathetic final motor neurons process their preganglionic synaptic inputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.