Magnetic nanostructures have been widely studied due to their potential applicability into several research fields such as data storage, sensing and biomedical applications. Focusing on the biomedical aspect, some new approaches deserve to be mentioned: cell manipulation and separation, contrast-enhancing agents for magnetic resonance imaging, and magnetomechanically induced cell death. This work focuses on understanding three different magnetic nanostructures, disks in the vortex state, synthetic antiferromagnetic particles and nanowires, first, by explaining their interesting properties and how they behave under an applied external field, before reviewing their potential applications for each of the aforementioned techniques.
The fabrication of segmented Ni/Cu nanowires (NWs), with tunable structural and magnetic properties, is reported. A potentiostatic electrodeposition method with a single electrolytic bath has been used to fabricate multisegmented Ni/Cu NWs inside a highly hexagonally ordered anodic nanoporous alumina membrane, with diameters of 50 nm and Ni segment lengths (L Ni) tuned from 10 nm up to 140 nm. The x-ray diffraction results evidenced a strong dependence of the Ni NWs crystallographic face-centered-cubic (fcc) texture along the [220] direction on the aspect ratio of the NWs. The magnetic behavior of the multisegmented Ni/Cu NW arrays, as a function of the magnetic field and temperature, is also studied and correlated with their structural and morphological properties. Micromagnetic simulations, together with the experimental results, showed a dominant antiferromagnetic coupling between Ni segments along the wire length for small low aspect-ratio magnetic segments. When increasing the Ni segments' length, the magnetic interactions between these along the wire became stronger, favouring a ferromagnetic coupling. The Curie temperature of the NWs was also found to strongly depend on the Ni magnetic segment length. Particularly the Curie temperature was found to be reduced 75 K for the 20 nm Ni segments, following the finite-size scaling relation with ξ 0 = 8.1 Å and γ = 0.48. These results emphasize the advantages of using a template assisted method to electrodeposit multilayer NWs, as it allows an easy tailor of the respective morphological, chemical, structural and magnetic properties.
A set of multi-segmented Fe/Cu nanowires were synthesized by a two-step anodization process of aluminum substrates and a pulsed electrodeposition technique using a single bath. While both Fe segment length and diameter were kept constant to (30 ± 7) and (45 ± 5) nm, respectively, Cu length was varied between (15 ± 5) and (120 ± 10) nm. The influence of the non-magnetic layer thickness variation on the nanowire magnetic properties was investigated through first-order reversal curve (FORC) measurements and micromagnetic simulations. Our analysis confirmed that, in the multi-segmented Fe/Cu nanowires with shorter Cu segments, the dipolar coupling between Fe segments controls the nanowire magnetic behavior, and its performance is like that of a homogenous Fe nanowire array of similar dimensions. On the other hand, multi-segmented Fe/Cu nanowires with larger Cu segments act like a collection of non-interacting magnetic entities (along the nanowire axis), and their global behavior is mainly controlled by the neighbor-to-neighbor nanodisc dipolar interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.