The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
A method for producing a stratified, squamous epithelium in vitro by cultivating rat keratinocytes on nylon membranes has been developed in this laboratory. This epidermal-like culture is being used to obtain a better understanding of the mechanism of skin vesication after topical exposure to the sulfur mustard bis(beta-chloroethyl) sulfide (BCES) dissolved in a selected solvent. Radiolabeled macromolecular precursors (thymidine, uridine, and leucine) have been used to study the effect of BCES on the synthesis of DNA, RNA, and protein, respectively, after topical exposure to the mustard at concentrations of 0.01-500 nmol/cm2 dissolved in 70% dimethyl sulfoxide (DMSO). From these and other studies it has been determined that exposure to even the low concentration of 0.01 nmol BCES/cm2 for 30 min results in significant inhibition of [3H]thymidine incorporation, although complete recovery occurs by 24 h. Significant inhibition of [3H]uridine and [14C]leucine incorporation is observed only after exposure to much higher concentrations of BCES (10-500 nmol/cm2). This suggests a very early lesion in macromolecular metabolism with DNA being the primary target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.