Waste pharmaceutical blister packages (WPBs) are a source of solid waste, which are composed of plastics and aluminum, therefore acting as a potential source for secondary aluminum. The structure of WPBs makes the recycling of aluminum notably more complex than typical aluminum recycling. Currently, WBPs are disposed of as municipal solid waste; thus, aluminum is lost from the circulation during incineration. In this work, three types of WPBs were studied, each with two plastic layers and a metallic layer. Delamination of WPBs to separate aluminum and plastic(s) was investigated by using a solution of organic solvents. The effects of temperature (30–50°C), acetone to isopropanol ratio (0–100 vol.%) and different types of WPBs on delamination behavior were investigated. The results suggest that aluminum separation and recovery from WPBs is 100% at optimum conditions. Moreover, an overall indicative flowsheet for recycling and post-processing of segregated aluminum from the plastic is also suggested.
Double Exposure Holographic Interferometry (DEHI) technique has wide applications in the field of science and engineering. DEHI can be used to determine very small surface changes in an object at very small interval of time.
In present case, DEHI technique is used to record the hologram of the same object at different times subjected to different loads. This method has been advantageously used to determine Young’s Modulus (Y) of Aluminium, Copper, iron, brass and some steel alloys. It is found that the values of Y obtained by using DEHI technique are in close agreement with standard values of Y available for respective metals and their alloys. The method is also used to make standard relation between effect of carbon composition and Y of steel alloys.
In this study, the leaching behaviour of aluminium from waste pharmaceutical blister packages (WPBs) is investigated in sulphuric acid media to build future strategies for aluminium recycling from this non-recycled waste fraction. The results suggest that in hydrometallurgical recycling, passivation of aluminium during leaching can be mitigated in dilute sulphuric acid solutions (0.25 M), at high temperatures (60–80 °C) and specifically with H2O2 addition. With this system, 100% extraction was achieved within five hours under optimized conditions (H2SO4 = 0.25 M, T = 80 °C, H2O2 = 1.25 vol.%). The leaching mechanism is suggested to be based on electrochemical dissolution of metallic aluminium oxidized by H+ or H2O2, followed by fast passivation by Al2O3 and consequent chemical dissolution of Al2O3 at slower kinetics. The calculated activation energy (~69 kJ/mol) suggests that the leaching reaction is controlled by the chemical or electrochemical reaction step rather than diffusion. By WPB leaching, an aluminium sulphate solution could be obtained, suitable for further aluminium sulphate crystallization. This may provide a potential route for the valorisation of aluminium from a currently overlooked waste fraction of pharmaceutical blister packages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.