The objective of this study was to evaluate the impact of varying concentrations of longkong pericarp extract (LPE) on the physicochemical properties of alginate-based edible nanoparticle coatings (NP-ALG) on shrimp. For developing the nanoparticles, the alginate coating emulsion with different LPE concentrations (0.5, 1.0, and 1.5%) was ultrasonicated at 210 W with a frequency of 20 kHz for 10 min and a pulse duration of 1s on and 4 off. After that, the coating emulsion was separated into four treatments (T): T1: Coating solution containing basic ALG composition and without the addition of LPE or ultrasonication treatment; T2: ALG coating solution converted into nano-sized particles with ultrasonication and containing 0.5% LPE; T3: ALG coating solution converted into nano-sized particles with ultrasonication and containing 1.0% LPE; T4: ALG coating solution converted into nano-sized particles with ultrasonication and containing 1.5% LPE. A control (C) was also used, where distilled water was used instead of ALG coating. Before coating the shrimp, all the coating materials were tested for pH, viscosity, turbidity, whiteness index, particle size, and polydispersity index. The control samples had the highest pH and whiteness index and was followed by the lowest viscosity and turbidity (p < 0.05). Among the T1–T4 coating materials, T4 coating had higher turbidity, particle size, polydispersity index, but lower pH, viscosity, and whiteness index (p < 0.05). To study the quality and shelf-life of the shrimp, all coated shrimp samples were refrigerated at 4 °C for a period of 14 days. At 2-day intervals, physiochemical and microbial analyses were performed. The coated shrimp also had a lower increase in pH and weight loss over the storage period (p < 0.05). Coatings containing 1.5% LPE significantly reduced the polyphenol oxidase activity in the shrimp (p > 0.05). The addition of LPE to NP-ALG coatings demonstrated dose-dependent antioxidant activity against protein and lipid oxidation. The highest LPE concentration (1.5%) led to increased total and reactive sulfhydryl content, along with a significant decrease in carbonyl content, peroxide value, thiobarbituric acid reactive substances, p-anisidine, and totox values at the end of the storage period (p < 0.05). Additionally, NP-ALG-LPE coated shrimp samples exhibited an excellent antimicrobial property and significantly inhibited the growth of total viable count, lactic acid bacteria, Enterobacteriaceae, and psychotropic bacteria during storage. These results suggested that NP-ALG-LPE 1.5% coatings effectively maintained the quality as well as extended the shelf-life of shrimp during 14 days of refrigerated storage. Therefore, the use of nanoparticle-based LPE edible coating could be a new and effective way to maintain the quality of shrimp during prolonged storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.