The broken symmetry in the atomic-scale ordering of glassy versus crystalline solids leads to a daunting challenge to provide suitable metrics for describing the order within disorder, especially on length scales beyond the nearest neighbor that are characterized by rich structural complexity. Here, we address this challenge for silica, a canonical network-forming glass, by using hot versus cold compression to (i) systematically increase the structural ordering after densification and (ii) prepare two glasses with the same high-density but contrasting structures. The structure was measured by high-energy X-ray and neutron diffraction, and atomistic models were generated that reproduce the experimental results. The vibrational and thermodynamic properties of the glasses were probed by using inelastic neutron scattering and calorimetry, respectively. Traditional measures of amorphous structures show relatively subtle changes upon compacting the glass. The method of persistent homology identifies, however, distinct features in the network topology that change as the initially open structure of the glass is collapsed. The results for the same high-density glasses show that the nature of structural disorder does impact the heat capacity and boson peak in the low-frequency dynamical spectra. Densification is discussed in terms of the loss of locally favored tetrahedral structures comprising oxygen-decorated SiSi4 tetrahedra.
Discovery of layered superconductors such as cuprates and iron-based compounds has unveiled new science and compounds. In these superconductors, quasi-two-dimensional layers including transition metal cations play principal role in the superconductivity via carrier doping by means of aliovalent-ion substitution. Here, we report on a two-dimensional superconductivity at 2 K in ThCr2Si2-type layered oxide Y2O2Bi possessing conducting monatomic Bi(2-) square net, possibly associated with an exotic superconductivity. The superconductivity emerges only in excessively oxygen-incorporated Y2O2Bi with expanded inter-net distance, in stark contrast to nonsuperconducting pristine Y2O2Bi reported previously. This result suggests that the element incorporation into hidden interstitial site could be an alternative approach to conventional substitution and intercalation methods for search of novel superconductors.
Dynamic control of thermal transport in solid materials is highly desired for thermal management technology. However, the development of a material exhibiting large modulation of thermal conductivity (κ) by external stimuli remains a major challenge. Here, the large κ modulation is reported by the reversible 3D to 2D crystal structure transition in a nonequilibrium solid solution of (Pb1−xSnx)Se, where Pb2+ stabilizes a 3D cubic structure while Sn2+ does a 2D layered structure. The phase boundary of these phases is induced in (Pb0.5Sn0.5)Se bulk polycrystals by thermally quenching the high‐temperature solid solution phase. Through the 3D–2D phase transition, the 1/2.9‐times decrease of lattice κ (κlat.) is achieved by strong phonon scattering in the 2D layered structure, and the electronic κ (κele.) is also decreased by 5 orders of magnitude due to the electronic phase transition from a 3D high conductivity state to a 2D semiconducting state. The total κ (=κlat. + κele.) modulation ratio κ3D phase/κ2D phase = 3.6 is attained at 373 K. The present strategy will lead to a novel concept for designing thermal management materials through crystal‐structure dimensionality switch using nonequilibrium phase boundaries.
The boson peak is a largely unexplained excitation found universally in the terahertz vibrational spectra of disordered systems; the so-called fracton is a vibrational excitation associated with the self-similar structure of monomers in polymeric glasses. We demonstrate that such excitations can be detected using terahertz spectroscopy. In the case of fractal structures, we determine the infrared light-vibration coupling coefficient for the fracton region and show that information concerning the fractal and fracton dimensions appears in the exponent of the absorption coefficient. Finally, using terahertz time-domain spectroscopy and low-frequency Raman scattering, we experimentally observe these universal excitations in a protein (lysozyme) system that has an intrinsically disordered and fractal structure and argue that the system should be considered a single supramolecule. These findings are applicable to amorphous and fractal objects in general and will be valuable for understanding universal dynamics of disordered systems via terahertz light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.