To clarify the mechanism of oxidative stress in skeletal muscle atrophied by immobilization, we measured the activities of antioxidant enzymes and xanthine oxidase (XOD) and carried out the cytochemical study of hydrogen peroxide in a typical slow red muscle, the soleus. Male Wistar rats (15 wk old), of which ankle joints of one hindlimb were immobilized in the fully extended position, were killed after 4, 8, or 12 days. The activities of Mn-containing superoxide dismutase (Mn-SOD), Cu-Zn-containing superoxide dismutase (Cu-Zn-SOD), Se-dependent glutathione peroxidase (Se-GSHPx), glutathione S-transferase, catalase, and glutathione reductase were measured spectrophotometrically. The XOD activity and the concentrations of hypoxanthine, xanthine, and urate were measured using a high-performance liquid chromatography. The cytochemical study of hydrogen peroxide in short-term organ culture was performed using an electron microscope. Increased Cu-Zn-SOD and decreased Mn-SOD in atrophy might reflect increased generation of superoxide anions in the cytoplasm rather than in the mitochondria. The source of superoxide anions in the cytoplasm might be the increased superoxide-producing XOD. Enhanced generation of superoxide anions and increased Cu-Zn-SOD activity in atrophy suggested the enhanced generation of hydrogen peroxide in the cytoplasm. Due to the unchanged activity of Se-GSHPx and the unchanged or slightly increased activity of catalase in atrophy, the ability to degrade hydrogen peroxide might not increase so much. Hence, hydrogen peroxide is expected to be increased in atrophy. The cytochemical study supported this expectation.(ABSTRACT TRUNCATED AT 250 WORDS)
Astaxanthin, a carotenoid found mainly in seafood, has potential clinical applications due to its antioxidant activity. In this study, we evaluated the effect of dietary astaxanthin derived from Haematococcus pluvialis on skin photoaging in UVA-irradiated hairless mice by assessing various parameters of photoaging. After chronic ultraviolet A (UVA) exposure, a significant increase in transepidermal water loss (TEWL) and wrinkle formation in the dorsal skin caused by UVA was observed, and dietary astaxanthin significantly suppressed these photoaging features. We found that the mRNA expression of lympho-epithelial Kazal-type-related inhibitor, steroid sulfatase, and aquaporin 3 in the epidermis was significantly increased by UVA irradiation for 70 days, and dietary astaxanthin significantly suppressed these increases in mRNA expression to be comparable to control levels. In the dermis, the mRNA expression of matrix metalloprotease 13 was increased by UVA irradiation and significantly suppressed by dietary astaxanthin. In addition, HPLC-PDA analysis confirmed that dietary astaxanthin reached not only the dermis but also the epidermis. Our results indicate that dietary astaxanthin accumulates in the skin and appears to prevent the effects of UVA irradiation on filaggrin metabolism and desquamation in the epidermis and the extracellular matrix in the dermis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.