Recently, various studies for the use of Fe-based shape memory alloy (Fe-SMA) in the construction field have been widely conducted. However, most of the studies for using Fe-SMA are carried out for applying Fe-SMA for strengthening deteriorated structures. However, if Fe-SMA is used as a reinforcement for new structures, the disadvantages of conventional prestressed concrete can be effectively solved. Therefore, in this work, an experimental study was conducted to evaluate the flexural behavior of concrete beams in which Fe-SMA rebars were used as tensile reinforcement. For the study, ten specimens were constructed with the consideration of the cross-sectional area and activation of Fe-SMA rebars as experimental variable. Activation of the Fe-SMA rebars by electrical resistance heating applied an eccentric compressive force to the specimen to induce camber. The camber increased by an average of 0.093 mm as the cross-sectional area of the Fe-SMA rebar increased by 100 mm2. It was also confirmed through the four-point bending tests that the initial crack loads of the activated specimens were 47.6%~112.8% greater than those of the nonactivated specimens. However, the ultimate strength of the activated specimens showed a slight difference of 3% to those of the nonactivated specimens. Therefore, it was confirmed that the effect of Fe-SMA activation on the ultimate strength of specimens was negligible.
This paper presents a finite element (FE) analysis for predicting the flexural behavior of reinforced concrete (RC) beams strengthened with Fe-based shape memory alloy (Fe-SMA) strips using a near surface mounted (NSM) method. Experimental results reported in the literature were used to verify the proposed FE model. FE analyses were conducted using OpenSees, a general-purpose structural FE analysis program. The RC beam specimens were modeled using a nonlinear beam-column element and a fiber element. The Concrete 02 model, Steel 01 model, and Pinching 04 model were applied to the concrete, steel reinforcement, and Fe-SMA strip in the fiber element, respectively, and the FE analysis was carried out in a displacement control method based on the Newton-Raphson method. The FE model of this study accurately predicted the initial crack load, yield load, and ultimate load. From parametric analyses, it was concluded that an increase in the compressive strength of the concrete increases the ductility of the specimen, and an increase in the level of recovery stress on the Fe-SMA strip increases the initial stiffness of the specimen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.