This article presents a contemporary overview of underwater acoustic communication (UWAC) and investigates physical layer aspects on cooperative transmission techniques for future UWAC systems. Taking advantage of the broadcast nature of wireless transmission, cooperative communication realizes spatial diversity advantages in a distributed manner. The current literature on cooperative communication focuses on terrestrial wireless systems at radio frequencies with sporadic results on cooperative UWAC. In this article, we summarize initial results on cooperative UWAC and investigate the performance of a multicarrier cooperative UWAC considering the inherent unique characteristics of the underwater channel. Our simulation results demonstrate the superiority of cooperative UWAC systems over their point-to-point counterparts.
Abstract-Although there already exists a rich literature on cooperative diversity, current results are mainly restricted to the conventional assumption of additive white Gaussian noise (AWGN). AWGN model realistically represents the thermal noise at the receiver, but ignores the impulsive nature of atmospheric noise, electromagnetic interference, or man-made noise which might be dominant in many practical applications. In this paper, we investigate the performance of cooperative communication over Rayleigh fading channels in the presence of impulsive noise modeled by Middleton Class A noise. Specifically, we consider a multi-relay network with amplify-and-forward relaying. Through the derivations of pairwise error probability, we quantify the diversity advantages. Based on the minimization of a union bound on the error rate performance, we formulate optimal power allocation schemes and demonstrate significant performance gains over their counterparts with equal power allocation. An extensive Monte Carlo simulation is also presented to illustrate the performance of cooperative schemes in various impulsive environments.Index Terms-Cooperative diversity, impulsive noise, spacetime block codes, pairwise error probability, power allocation.
In through-the-wall radar imaging, multipath propagation can create ghost targets, which can adversely affect the image reconstruction process. However, unlike genuine targets, ghost positions are aspect-dependent, which means their position changes with the transceiver location. This paper proposes efficient ghost suppression methods exploiting aspect dependence feature under compressive sensing framework. This paper proposes a generalized signal model that accommodates for the reflections of the front-wall and target-to-target interactions, making the scheme more practical, yet the knowledge of the location of reflecting geometry is not a requirement as in most of the recent literatures. In addition, the sensing matrix is greatly reduced making the methods more attractive. Moreover, this paper investigates the influence of array configurations by examining two antenna array configurations: multimonostatic, and single-view bistatic configurations. Results based on synthesized data and real experiment show that the proposed method can greatly suppress multipath ghosts and hence increase signal-to-clutter ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.