Herein, we aim to develop a facile method for the fabrication of mechanical metamaterials from templated polymerization of thermosets including phenolic and epoxy resins using self-assembled block copolymer, polystyrene–polydimethylsiloxane with tripod network (gyroid), and tetrapod network (diamond) structures, as templates. Nanoindentation studies on the nanonetwork thermosets fabricated reveal enhanced energy dissipation from intrinsic brittle thermosets due to the deliberate structuring; the calculated energy dissipation for gyroid phenolic resins is 0.23 nJ whereas the one with diamond structure gives a value of 0.33 nJ. Consistently, the gyroid-structured epoxy gives a high energy dissipation value of 0.57 nJ, and the one with diamond structure could reach 0.78 nJ. These enhanced properties are attributed to the isotropic periodicity of the nanonetwork texture with plastic deformation, and the higher number of struts in the tetrapod diamond network in contrast to tripod gyroid, as confirmed by the finite element analysis.
Inspired by Mantis shrimp, this work aims to suggest a bottom-up approach for the fabrication of nanonetwork hydroxyapatite (HAp) thin film using self-assembled polystyrene-block-polydimethylsiloxane (PS-b-PDMS) block copolymer (BCP) with a diamond nanostructure as a template for templated sol–gel reaction. By introducing poly(vinylpyrrolidone) (PVP) into precursors of calcium nitrate tetrahydrate and triethyl phosphite, which limits the growth of forming HAp nanoparticles, well-ordered nanonetwork HAp thin film can be fabricated. Based on nanoindentation results, the well-ordered nanonetwork HAp shows high energy dissipation compared to the intrinsic HAp. Moreover, the uniaxial microcompression test for the nanonetwork HAp shows high energy absorption per volume and high compression strength, outperforming many cellular materials due to the topologic effect of the well-ordered network at the nanoscale. This work highlights the potential of exploiting BCP templated synthesis to fabricate ionic solid materials with a well-ordered nanonetwork monolith, giving rise to the brittle-to-ductile transition, and thus appealing mechanical properties with the character of mechanical metamaterials.
Herein, this work aims to fabricate well-ordered nanonetwork epoxy resin modified with poly(butyl acrylate)-b-poly(methyl methacrylate) (PBA-b-PMMA) block copolymer (BCP) for enhanced energy dissipation using a self-assembled diblock copolymer of polystyrene-b-poly(dimethylsiloxane) (PS-b-PDMS) with gyroid and diamond structures as templates. A systematic study of mechanical properties using nanoindentation of epoxy resin with gyroid- and diamond-structures after modification revealed significant enhancement in energy dissipation, with the values of 0.36 ± 0.02 nJ (gyroid) and 0.43 ± 0.03 nJ (diamond), respectively, when compared to intrinsic epoxy resin (approximately 0.02 ± 0.002 nJ) with brittle characteristics. This enhanced property is attributed to the synergic effect of the deliberate structure with well-ordered nanonetwork texture and the toughening of BCP-based modifiers at the molecular level. In addition to the deliberate structural effect from the nanonetwork texture, the BCP modifier composed of epoxy-philic hard segment and epoxy-phobic soft segment led to dispersed soft-segment domains in the nanonetwork-structured epoxy matrix with superior interfacial strength for the enhancement of applied energy dissipation.
Herein, this work aims to develop a facile method for the fabrication of metallic mechanical metamaterial with a well-ordered diamond structure from a bottom-up approach using a self-assembled block copolymer for templated electrochemical deposition. By controlling the effective volume fraction of PDMS in PS-b-PDMS via solvent annealing followed by HF etching of PDMS, it is feasible to obtain nanoporous PS with diamond-structured nanochannels and used it as a template for templated electrochemical deposition. Subsequently, well-ordered nanonetwork gold (Au) can be fabricated. As evidenced by nanoindentation and micro-compression tests, the mechanical properties of the diamond-structured Au after removal of PS give the combination of lightweight and mechanically robust characteristics with an exceptionally high reduced elastic modulus of 11.9 ± 0.6 GPa and yield strength of 193 ± 11 MPa above the Hashin-Shtrikman upper bound of 72 MPa with a bending-dominated structure at equivalent density. The corresponding deformation mechanism can be elucidated by morphological observations experimentally and finite element analysis (FEA) numerically. This work demonstrates the bottom-up approach to fabricating metallic monolith with diamond structure in the nanoscale, giving a superior performance as mechanical metamaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.