Herein, we aim to develop a facile method for the fabrication of mechanical metamaterials from templated polymerization of thermosets including phenolic and epoxy resins using self-assembled block copolymer, polystyrene–polydimethylsiloxane with tripod network (gyroid), and tetrapod network (diamond) structures, as templates. Nanoindentation studies on the nanonetwork thermosets fabricated reveal enhanced energy dissipation from intrinsic brittle thermosets due to the deliberate structuring; the calculated energy dissipation for gyroid phenolic resins is 0.23 nJ whereas the one with diamond structure gives a value of 0.33 nJ. Consistently, the gyroid-structured epoxy gives a high energy dissipation value of 0.57 nJ, and the one with diamond structure could reach 0.78 nJ. These enhanced properties are attributed to the isotropic periodicity of the nanonetwork texture with plastic deformation, and the higher number of struts in the tetrapod diamond network in contrast to tripod gyroid, as confirmed by the finite element analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.