The trend of health care screening devices in the world is increasingly towards the favor of portability and wearability. This is because these wearable screening devices are not restricting the patient’s freedom and daily activities. While the demand of low power and low cost biomedical system on chip is increasing in exponential way, the front-end electrocardiogram (ECG) amplifiers are still suffering from flicker noise for low frequency cardiac signal acquisition, 50Hz power line electromagnetic interference, and the large unstable input offsets due to the electrode-skin interface is not attached properly. In this paper, a CMOS based ECG amplifier that suitable for low power wearable cardiac screening is proposed. The amplifier adopts the highly stable folded cascode topology and later being implemented into RC feedback circuit for low frequency DC offset cancellation. By using 0.13µm CMOS technology from Silterra, the simulation results show that this front-end circuit can achieve a very low input referred noise of 1pV/Hz1/2 and high common mode rejection ratio of 174.05dB. It also gives voltage gain of 75.45dB with good power supply rejection ratio of 92.12dB. The total power consumption is only 3µW and thus suitable to be implemented with further signal processing and classification back end for low power wearable biomedical device.<br /><br />
Today, the number of vehicles using the road including highways and single carriage way is increasing. road structure safety monitoring system that is safe for road users and also important to ensure long-term vehicle safety and prevent accidents due to road damage such as potholes, landslides and uneven roads. Most news reports of road accidents are also caused by potholes that are almost 10-30 cm deep, coupled with heavy rainfall that reduces visibility among drivers, significant damage to the suspension system to the vehicle or unnecessary traffic congestion. In this paper, deep learning detection with YOLOv3 algorithm is proposed apart from researches ranging from accelerometer detection, image processing or machine learning based detection as it is easier to develop and provide more accurate results. After pothole has been detected in real-time webcam, the location will be logged and displayed using Google Maps API for visualization. a total of 330 sets of data were sampled for the implementation of the pothole detection training model. As the results, the model provided 65.05 mAP and 0.9 % precision rate and 0.41 recall rate. The limitation of YOLOv3 algorithm detection can be improve further using GPU with higher specification performances and can sample 1000 to 10,000 datasets. The proposed algorithm provides acceptably high precision and efficient pothole monitoring solution under different scenarios for the users and may benefit the public and the government to monitor pothole in real-time.
It is expected that in the next decade, majority of world population will be living in cities. Better public services and infrastructures in the city are needed to cope with the booming population. City vehicles that cruising for parking have indirectly causing traffic, making one harder to travel around the city. Thus, a smart parking system can certainly lays the foundation to build a smart city. This paper proposed a cost-effective IoT smart parking system to monitor city parking space and provide real-time parking information to drivers. Moreover, instead of the conventional approach that uses embedded sensors to detect vehicles in the parking area, camera image and machine vision technology are used to obtain the parking status. In the prototype, twenty outdoor parking lots are covered using a 5 megapixel camera connected to Raspberry Pi 3 installed at the 5th floor of the nearby building. Machine vision in this project that involved motion tracking and Canny edge detection are programmed in Python 2 using OpenCV technology. Corresponding data is uploaded to an IoT platform called Ubidots for possible monitoring activity. An Android mobile application is designed for user to download real-time data of parking information. This paper introduces a low cost smart parking system with the overall detection accuracy of 96.40%. Also, the mobile application allows users to alert other car owners for any emergency incidents and double parking blockage. The developed system can provide a platform for users to search for empty car parking with ease and reduce the traffic issues such as illegal double parking especially in the urban area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.