A droplet-based microfluidic method for the preparation of anisotropic gold nanocrystal dispersions is presented. Gold nanoparticle seeds and growth reagents are dispensed into monodisperse picoliter droplets within a microchannel. Confinement within small droplets prevents contact between the growing nanocrystals and the microchannel walls. The critical factors in translating macroscale flask-based methods to a flow-based microfluidic method are highlighted and approaches are demonstrated to flexibly fine tune nanoparticle shapes into three broad classes: spheres/spheroids, rods, and extended sharp-edged structures, thus varying the optical resonances in the visible-near-infrared (NIR) spectral range.
The availability of robust, scalable, and automated nanoparticle manufacturing processes is crucial for the viability of emerging nanotechnologies. Metallic nanoparticles of diverse shape and composition are commonly manufactured by solution-phase colloidal chemistry methods, where rapid reaction kinetics and physical processes such as mixing are inextricably coupled, and scale-up often poses insurmountable problems. Here we present the first continuous flow process to synthesize thin gold "nanoshells" and "nanoislands" on colloidal silica surfaces, which are nanoparticle motifs of considerable interest in plasmonics-based applications. We assemble an ordered, flowing composite foam lattice in a simple microfluidic device, where the lattice cells are alternately aqueous drops containing reagents for nanoparticle synthesis or gas bubbles. Microfluidic foam generation enables precisely controlled reagent dispensing and mixing, and the ordered foam structure facilitates compartmentalized nanoparticle growth. This is a general method for aqueous colloidal synthesis, enabling continuous, inherently digital, scalable, and automated production processes for plasmonic nanomaterials.
Microfluidic wet-chemical synthesis of nanoparticles is a growing area of research in chemical microfluidics, enabling the development of continuous manufacturing processes that overcome the drawbacks of conventional batch-based synthesis methods. The synthesis of ultra-small (<5 nm) metallic nanocrystals is an interesting area with many applications in diverse fields, but is typically very challenging to accomplish in a microfluidics-based system due to the use of a strong gas-evolving reducing agent, aqueous sodium borohydride (NaBH(4)), which causes uncontrolled out-gassing and bubble formation, flow disruption and ultimately reactor failure. Here we present a simple method, rooted in the concepts of multiphase mass transfer that completely overcomes this challenge-we simply inject a stream of inert gas bubbles into our channels that essentially capture the evolving gas from the reactive aqueous solution, thereby preventing aqueous dissolved gas concentration from reaching the solubility threshold for bubble nucleation. We present a simple model for coupled mass transfer and chemical reaction that adequately captures device behaviour. We demonstrate the applicability of our method by synthesizing ultra-small gold nanocrystals (<5 nm); the quality of nanocrystals thus synthesized is further demonstrated by their use in an off-chip synthesis of high-quality gold nanorods. This is a general approach that can be extended to a variety of metallic nanomaterials.
We present a new and general scheme for analytical applications of droplet-based microfluidics in which flowing droplets function not only as isolated reaction flasks, but are also capable of on-drop separation and sensing. To demonstrate this, we choose ionic liquids as designer fluids whose chemical and physical properties can be tailored in task-specific fashion. We create aqueous-ionic liquid compound droplets with tunable structures using an imidazolium-based ionic liquid, and present two analytical applications-separation of a binary aqueous mixture of organic dyes and dynamic pH sensing-to highlight the salient features of this scheme. By combining designer fluids with designer microfluidic emulsions, our work opens up a rich space of exploration for analytical microfluidics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.