Background: Piperine is the primary pungent alkaloid isolated from the fruit of black peppercorns. Piperine is used frequently in dietary supplements and traditional medicines. The objective of the present study was to investigate the effects of piperine on the testis development in the pubertal rat.Methods: Piperine (0 or 5 or 10 mg/kg) was gavaged to 35-day-old male Sprague-Dawley rats for 30 days. Serum levels of testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were measured. The development of adult Leydig cell population was also analyzed 65 days postpartum. For in vitro studies, immature Leydig cells were isolated from 35-day-old male rats and treated with 50 μM piperine in the presence of different steroidogenic stimulators/substrates for 24 h.Results: Thirty-day treatment of rats with piperine significantly increased serum T levels without affecting LH concentrations. However, piperine treatment reduced serum FSH levels. Consistent with increase in serum T, piperine increased Leydig cell number, cell size, and multiple steroidogenic pathway proteins, including steroidogenic acute regulatory protein, cholesterol side-chain cleavage enzyme, 3β-hydroxysteroid dehydrogenase 1, 17α-hydroxylase/20-lyase, and steroidogenic factor 1 expression levels. Piperine significantly increased the ratio of phospho-AKT1 (pAKT1)/AKT1, phosphos-AKT2 (pAKT2)/AKT2, and phospho-ERK1/2 (pERK1/2)/ERK1/2 in the testis. Interestingly, piperine inhibited spermatogenesis. Piperine in vitro also increased androgen production and stimulated cholesterol side-chain cleavage enzyme and 17α-hydroxylase/20-lyase activities in immature Leydig cells.Conclusion: Piperine stimulates pubertal Leydig cell development by increasing Leydig cell number and promoting its maturation while it inhibits spermatogenesis in the rat. ERK1/2 and AKT pathways may involve in the piperine-mediated stimulation of Leydig cell development.
Propofol as an agonist of GABAA receptor has a rewarding and discriminative stimulus effect. However, which subtype of the GABAA receptor is involved in the discriminative stimulus effects of propofol is still not clear. We observed the effects of an agonist or an antagonist of the subtype-selective GABAA receptor on discriminative stimulus effects of propofol. Male Sprague-Dawley rats were trained to discriminate 10 mg/kg (intraperitoneal) propofol from intralipid under a fixed-ratio 10 schedule of food reinforcement. We found that propofol produced dose-dependent substitution for propofol at 10 mg/kg, with response rate reduction only at a dose above those producing the complete substitution. CL218,872 (1–3 mg/kg, intraperitoneal), an α1 subunit-selective GABAA receptor agonist, and SL651,498 (0.3–3 mg/kg, intraperitoneal), an α2/3 GABAA receptor selective agonist, could partially substitute for the discriminative stimulus effects of propofol (40–80% propofol-appropriate responding). Meanwhile, L838,417 (0.2–0.6 mg/kg, intravenous), a α2/3/5 GABAA receptor selective agonist, could produce near 100% propofol-appropriate responding and completely substitute for propofol effects. Moreover, the administration of L655,708, the α5 GABAA receptor inverse agonist, could dose dependently attenuate the discriminative stimulus of propofol. In contrast, the α1 GABAA receptor antagonist β-CCt (1–3 mg/kg) combined with propofol (10 mg/kg) failed to block the propofol effect. The data showed that propofol produces discriminative stimulus effects in a dose-dependent manner and acts mainly on the α5 GABAA to produce the discriminative stimulus effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.