Multi-task learning (MTL) approaches are actively used for various natural language processing (NLP) tasks. The Multi-Task Deep Neural Network (MT-DNN) has contributed significantly to improving the performance of natural language understanding (NLU) tasks. However, one drawback is that confusion about the language representation of various tasks arises during the training of the MT-DNN model. Inspired by the internal-transfer weighting of MTL in medical imaging, we introduce a Sequential and Intensive Weighted Language Modeling (SIWLM) scheme. The SIWLM consists of two stages: (1) Sequential weighted learning (SWL), which trains a model to learn entire tasks sequentially and concentrically, and (2) Intensive weighted learning (IWL), which enables the model to focus on the central task. We apply this scheme to the MT-DNN model and call this model the MTDNN-SIWLM. Our model achieves higher performance than the existing reference algorithms on six out of the eight GLUE benchmark tasks. Moreover, our model outperforms MT-DNN by 0.77 on average on the overall task. Finally, we conducted a thorough empirical investigation to determine the optimal weight for each GLUE task.
Humans usually have conversations by making use of prior knowledge about a topic and background information of the people whom they are talking to. However, existing conversational agents and datasets do not consider such comprehensive information, and thus they have a limitation in generating the utterances where the knowledge and persona are fused properly. To address this issue, we introduce a call For Customized conversation (FoCus) dataset where the customized answers are built with the user's persona and Wikipedia knowledge. To evaluate the abilities to make informative and customized utterances of pre-trained language models, we utilize BART and GPT-2 as well as transformer-based models. We assess their generation abilities with automatic scores and conduct human evaluations for qualitative results. We examine whether the model reflects adequate persona and knowledge with our proposed two sub-tasks, persona grounding (PG) and knowledge grounding (KG). Moreover, we show that the utterances of our data are constructed with the proper knowledge and persona through grounding quality assessment.
Humans usually have conversations by making use of prior knowledge about a topic and background information of the people whom they are talking to. However, existing conversational agents and datasets do not consider such comprehensive information, and thus they have a limitation in generating the utterances where the knowledge and persona are fused properly. To address this issue, we introduce a call For Customized conversation (FoCus) dataset where the customized answers are built with the user's persona and Wikipedia knowledge. To evaluate the abilities to make informative and customized utterances of pre-trained language models, we utilize BART and GPT-2 as well as transformer-based models. We assess their generation abilities with automatic scores and conduct human evaluations for qualitative results. We examine whether the model reflects adequate persona and knowledge with our proposed two sub-tasks, persona grounding (PG) and knowledge grounding (KG). Moreover, we show that the utterances of our data are constructed with the proper knowledge and persona through grounding quality assessment.
Relation Extraction (RE) aims to predict the correct relation between two entities from the given sentence. To obtain the proper relation in Relation Extraction (RE), it is significant to comprehend the precise meaning of the two entities as well as the context of the sentence. In contrast to the RE research in English, Korean-based RE studies focusing on the entities and preserving Korean linguistic properties rarely exist. Therefore, we propose K-EPIC (Entity-Perceived Context representation in Korean) to ensure enhanced capability for understanding the meaning of entities along with considering linguistic characteristics in Korean. We present the experimental results on the BERT-Ko-RE and KLUE-RE datasets with four different types of K-EPIC methods, utilizing entity position tokens. To compare the ability of understanding entities and context of Korean pre-trained language models, we analyze HanBERT, KLUE-BERT, KoBERT, KorBERT, KoELECTRA, and multilingual-BERT (mBERT). The experimental results demonstrate that the F1 score increases significantly with our K-EPIC and that the performance of the language models trained with the Korean corpus outperforms the baseline.
BlenderBot 2.0 is a dialogue model that represents open-domain chatbots by reflecting realtime information and remembering user information for an extended period using an internet search module and multi-session. Nonetheless, the model still has room for improvement. To this end, we examined BlenderBot 2.0's limitations and errors from three perspectives: model, data, and user. From the data point of view, we highlight the unclear guidelines provided to workers during the crowdsourcing process, as well as a lack of a process for refining hate speech in the collected data and verifying the accuracy of internet-based information. From a user's perspective, we identify nine types of problems of BlenderBot 2.0, and their causes are thoroughly investigated. Furthermore, for each point of view, practical improvement methods are proposed, and we discuss several potential future research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.