Small millets are a group of six crops comprising of finger millet, kodo millet, little millet, foxtail millet, barnyard millet and proso millet. They are considered as nutri- cereals and are source of food, feed and fodder. The crops are grown in a variety of agro-ecological situations including plains, coast and hills as well as in diverse soils and varying rainfall. They are known for resilience and drought enduring capacity and are relatively less prone to major pests and diseases. The richness in calcium, dietary fiber, polyphenol and protein contents in millets make them unique among the cereals. Generally, millets show significant amounts of amino acids like methionine and cystine and also have high fat content than rice and maize. Millets have nutraceutical properties in the form of antioxidants which prevent deterioration of human health such as lowering blood pressure, risk of heart disease, prevention of cancer and cardiovascular diseases, diabetes, decreasing tumor cases etc. The contribution of millets to national food security and their potential health benefits, millet grain is now receiving increasing interest from food scientists, technologists and nutritionists.
Wild life: Browntop millet produces large quantities of seeds. These millet seeds are used in food plots for game birds that are highly attracted to the nutritious seed. Browntop millet is one of the few types of millet that can be planted and flooded for ducks or planted in dry areas for deer, quail, dove, turkey and other wild life.
Small millets are nutri-rich, climate-resilient food and fodder crops. They include finger millet, proso millet, foxtail millet, little millet, kodo millet, browntop millet, and barnyard millet. They are self-pollinated crops and belong to the family Poaceae. Hence, to widen the genetic base, the creation of variation through artificial hybridization is a prerequisite. Floral morphology, size, and anthesis behavior cause major hindrances in recombination breeding through hybridization. Manual emasculation of florets is practically very difficult; therefore, the contact method of hybridization is widely followed. However, the success rate of obtaining true F1s is 2% to 3%. In finger millet, hot water treatment (52°C) for 3 to 5 min causes temporal male sterility. Chemicals such as maleic hydrazide, gibberellic acid, and ethrel at different concentrations aid in inducing male sterility in finger millet. Partial-sterile (PS) lines developed at the Project Coordinating Unit, Small Millets, Bengaluru are also in use. The percent seed set in crosses derived from PS lines ranged from 27.4 to 49.4, with an average of 40.10%. In proso millet, little millet, and browntop millet, apart from contact method, hot water treatment, hand emasculation, and the USSR method of hybridization are also followed. A newly developed modified crossing method known as the Small Millets University of Agricultural Sciences Bengaluru (SMUASB) method in proso and little millets has a success rate of 56% to 60% in obtaining true hybrids. Hand emasculation and pollination under the greenhouse and growth chamber in foxtail millet with a success rate of 75% seed set is suggested. In barnyard millet, hot water treatment (48°C to 52°C) for 5 min followed by the contact method is often practiced. Kodo millet being cleistogamous, mutation breeding is widely followed to create variation. Most commonly, hot water treatment is followed in finger millet and barnyard millet, SMUASB in proso, and little millet. Although no specific method is suitable for all small millets, it is essential to identify a trouble-free technique that produces maximum crossed seeds in all the small millets.
Finger millet [Eleusine coracana (L.) Gaertn.] is an ancient and important millet crop of India. The crop is predominantly grown as rainfed crop in the peninsular Indian states. The crop has shown numerous advantages over major cereals in terms of stress adaptation, nutritional quality and health benefits. Finger millet is highly self pollinated crop. Hybridization in finger millet is difficult due to small cleistogamous florets. Presently hot-water treatment followed by contact method of crossing is widely used across institutes for generating breeding populations. The availability of versatile male sterile systems could enhance hybridization in the crop. A novel male sterile line PS1, developed and maintained just by growing in isolation and thus improving its accessibility for hybridization. The varieties in finger millet released over a period of time were by adapting hybridization followed by selection. Till now, a total of 141 varieties of finger millet have been developed and released in the country. Finger millet occupies a prime position among millets. Realizing the nutritional importance, it is now in high demand. Knowledge on the improved production strategies right from selection of high yielding varieties to market led extension and extensive usage at national and global level has a vital role. The review, therefore, provided detailed information on hybridization methods, crop improvement and details of recently released varieties and their adaptation in finger millet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.