The market trend for product miniaturization promotes research and education in micro manufacturing. Micromachining is an extension of conventional machining when chips are removed in micro/nano scales, but micromachining requires new knowledge, specially designed equipment, tooling, and additional knowledge for successful results. Common machining techniques for macro-scale machining often lead to inconclusive data and frustration when applying to micromachining. This paper presents a synergistic effort that offers research and educational opportunities to students. Equipment and tooling are provided by industry, while resources are provided by university and National Science Foundation to both graduate and undergraduate students. The lab exercises are designed to complement research activities so that a broader impact can be achieved. The study presents the necessary conditions and infrastructure for successful micro machining. It characterizes how micromist would benefit micromachining, and predicts how micro tools would fail during services. It has been experimentally verified that micromist significantly improves tool life of microtools when compared to flood coolant and dry micromachining. Using the analogy of flow of the coolant over a rotating tool, computational fluid mechanics is used to optimize set up conditions that gives maximum lubrication and cooling effects at the cutting edges of a micromilling cutter. The optimal droplet size is calculated assuming it can penetrate the boundary layer of a high-speed rotating tool and reach the tool surface. Failure of microtools includes the adverse effects of spindle run out, tool deflection, and high cutting stress in micro machining. Dynamic response and laser displacement methods are used to characterize the equipment and setup. Finite element techniques are used to study and analyze the effects for different cutting conditions on the failure of microcutting tool. Experimental data on micromachining of 316L stainless steel are presented and confirmed with theoretical calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.