Damaged skin cannot prevent harmful bacteria from invading tissues, causing infected wounds and even serious tissue damage. Traditional treatments can not only kill pathogenic bacteria, but also suppress the growth of beneficial bacteria, thus destroying the balance of the damaged skin microbial ecosystem. Here, a living bacterial hydrogel scaffold is reported that accelerates infected wound healing through beneficial bacteria secreting antibacterial substances. Lactobacillus reuteri, a common probiotic, is encapsulated in hydrogel microspheres by emulsion polymerization and further immobilized in a hydrogel network by covalent cross‐linking of methacrylate‐modified hyaluronic acid. Owing to light‐initiated crosslinking, the hydrogel dressing can be generated in situ at the wound site. This hydrogel scaffold not only protects bacteria from immune system attack, but also prevents bacteria from escaping into the local environment, thus avoiding potential threats. Both in vitro and in vivo experiments show that it has excellent ability against harmful bacteria and anti‐inflammatory capabilities, promoting infected wound closure and new tissue regeneration. This work may open up new avenues for the application of living bacteria in the clinical management of infected wounds.
The transcriptional factor SALL4, an important stem cell regulator, is expressed in hematopoietic stem cells and various malignancies, but its role in EGFR-mutated NSCLCs has not been studied yet. Here, we report that the expression of Sal-like protein 4 (SALL4), was significantly higher in EGFR mutated lung tumors than in non-tumor tissue. SALL4-high lung cancer patients had poorer prognosis after surgery than SALL4-low patients. The expression of SALL4 could be induced by the activation of EGFR through the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. The knockdown of SALL4 expression could suppress spheroid formation and the expression of lung cancer stem cell marker CD44. More interestingly, the knockdown of SALL4 expression could suppress the migration, invasion, and metastasis of the lung cancer cells and significantly increase the sensitivity of EGFR mutated cells to Erlotinib. These results suggest that SALL4 may be a novel potential therapeutic target for the diagnosis and treatment of lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.