IK depletion leads to an aberrant mitotic entry because of chromosomal misalignment through the enhancement of Aurora B activity at the interphase. Here, we demonstrate that IK, a spliceosomal component, plays a crucial role in the proper splicing of the ATM pre-mRNA among other genes related with the DNA Damage Response (DDR). Intron 1 in the ATM pre-mRNA, having lengths <200 bp, was not spliced in the IK-depleted cells and led to a deficiency of the ATM protein. Subsequently, the IK depletion-induced ATM protein deficiency impaired the ability to repair the damaged DNA. Because the absence of SMU1 results in IK degradation, the mechanism underlying IK degradation was exploited. IK was ubiquitinated in the absence of SMU1 and then subjected to proteolysis through the 26S proteasome. To prevent the proteolytic degradation of IK, a deubiquitinating enzyme, USP47, directly interacted with IK and stabilized it through deubiquitination. Collectively, our results suggest that IK is required for proper splicing of the ATM pre-mRNA and USP47 contributes toward the stabilization of IK.
In most mammalian cells, the primary cilium is a microtubule-enriched protrusion of the plasma membrane and acts as a key coordinator of signaling pathways during development and tissue homeostasis. The primary cilium is generated from the basal body, and cancerous inhibitor of protein phosphatase 2A (CIP2A), the overexpression of which stabilizes c-MYC to support the malignant growth of tumor cells, is localized in the centrosome. Here, we show that CIP2A overexpression induces primary cilia disassembly through the activation of Aurora A kinase, and CIP2A depletion increases ciliated cells and cilia length in retinal pigment epithelium (RPE1) cells. CIP2A depletion also shifts metabolism toward the glycolytic pathway by altering the expression of metabolic genes related to glycolysis. However, glycolytic activation in CIP2A-depleted cells does not depend on cilia assembly, even though enhanced cilia assembly alone activates glycolytic metabolism. Collectively, these data suggest that CIP2A promotes primary cilia disassembly and that CIP2A depletion induces metabolic reprogramming independent of primary cilia.
Characterization of circulating tumor cells (CTC) is important to prevent death caused by the metastatic spread of cancer cells because CTC are associated with distal metastasis and poor prognosis of breast cancer. We have previously developed suspension cells (SC) using breast cancer cell lines and demonstrated their high metastatic potential. As survival of CTC is highly variable from a few hours to decades, herein we cultured SC for an extended time and named them adapted suspension cells (ASC). Silent mating‐type information regulation 2 homolog 1 (SIRT1) expression increased in ASC, which protected the cells from apoptosis. High SIRT1 expression was responsible for the suppression of nuclear factor kappa B (NF‐κB) activity and downregulation of reactive oxygen species (ROS) in ASC. As the inhibition of NF‐κB and ROS production in SIRT1‐depleted ASC contributed to the development of resistance to apoptotic cell death, maintenance of a low ROS level and NF‐κB activity in ASC is a crucial function of SIRT1. Thus, SIRT1 overexpression may play an important role in growth adaptation of SC because SIRT1 expression is increased in long‐term rather than in short‐term cultures.
Pre–B cell leukemia homeobox 1 (PBX1) controls chromatin accessibility to a large number of genes in various cell types. Its dominant negative splice isoform, PBX1D, which lacks the DNA and Hox-binding domains, is expressed more frequently in the CD4+ T cells from lupus-prone mice and patients with systemic lupus erythematosus than healthy control subjects. PBX1D overexpression in CD4+ T cells impaired regulatory T cell homeostasis and expanded inflammatory CD4+ T cells. In this study, we showed that PBX1 message expression is downregulated by activation in CD4+ T cells as well as in B cells. PBX1D protein was less stable than the normal isoform, PBX1B, and it is degraded through the ubiquitin-proteasome–dependent pathway. The DNA binding domain lacking in PBX1D has two putative ubiquitin binding sites, K292 and K293, that are predicted to be in direct contact with DNA. Mutation of K292-293 reduced PBX1B stability to a level similar to PBX1D and abrogated DNA binding. In addition, contrary to PBX1B, PBX1D is retained in the cytoplasm without the help of the cofactors MEIS or PREP1, indicating a different requirement for nuclear translocation. Overall, these findings suggest that multiple post-transcriptional mechanisms are responsible for PBX1D loss of function and induction of CD4+ T cell inflammatory phenotypes in systemic lupus erythematosus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.