The development of multinode quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates, and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of preselected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multimode interference beamsplitter via in situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with g(0) = 0.13 ± 0.02. Due to its high patterning resolution as well as spectral and spatial control, in situ electron beam lithography allows for integration of preselected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way toward multinode, fully integrated quantum photonic chips.
Integrated quantum devices are at the basis of the realisation of scalable, high-performance quantum technology, including quantum computers and quantum communication schemes, where single photons are emitted, guided, manipulated and detected on a chip. Engineered nano-devices enable the efficient confinement of light and, ultimately, the control of the spontaneous emission dynamics of single emitters, which is crucial for cavity quantum electrodynamics experiments and for the de-
By using graphene as an electron beam-transparent substrate for both nanomaterial growth and transmission electron microscopy (TEM) measurements, we investigate initial growth behavior of nanomaterials. The direct growth and imaging method using graphene facilitate atomic-resolution imaging of nanomaterials at the very early stage of growth. This enables the observation of the transition in crystal structure of ZnO nuclei and the formation of various defects during nanomaterial growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.