Purpose -Rapid prototyping (RP) technology has been widely applied in biomedical research. The purpose of this paper is to describe how a scaffold composite drug delivery system (DDS) was fabricated using a nano composite deposition system (NCDS). Design/methodology/approach -A biocompatible and biodegradable thermoplastic polymer (poly(DL-lactide-co-glycolide acid)) was used as the matrix, and a mixture of anti-cancer drug (5-fluorouracil) and bio-ceramic (hydroxyapatite -HA) was added to the polymer to form a bio-composite material for the DDS. An in vitro drug release test showed that the release rate of the drug composite could be controlled by the amount of HA for 50 days. Findings -Faster release was observed for the DDS with higher weight percent of HA. The relationship between release rate and the amount of HA showed a bi-linear manner, and bi-linear drug release models were developed based on the experimental results. Originality/value -Cylindrical scaffolds were fabricated with polymer/drug/additive using an NCDS. A series of in vitro drug release tests was performed to evaluate the effectiveness of the additive, HA. Drug release models were developed based on the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.