Utilization of waste rubber tires in concrete technology is a popular research topic over the last two decades. Reuse of waste rubber tires in self-compacting concrete leads sustainable construction. Several studies have been conducted on incorporation of waste rubber tires in self-compacting concrete (SCC). This review paper draws general conclusions on fundamental properties of SCC by summarising and comparing many independent research works and justifies weather these waste tire aggregates are possible to utilize in self-compacting concrete or not. From the review it is evident that the waste rubber tire aggregates can be used in SCC as partial replacement of both coarse aggregates and fine aggregates. The result Although the mechanical properties of SCC experiences negative effect for introduction of waste rubber tire aggregates, still performance of rubberized SCC is better than ordinary SCC. Fresh properties of SCC incorporating rubber tire aggregates also is in acceptable limit.
Pervious concrete is one of the most promising sustainable material nowadays. Pervious concrete is the mixture of cement, smaller size coarse aggregate, water and admixture. As cement industry is one of the most polluted industry, so for reducing the pollution and cost of concrete cement may be fully or partially replaced by waste materials like fly ash, rice husk ash, waste rubber tire, furnace slag, silica fume, solid waste etc. This paper illustrates the performance of pervious concrete with these sustainable materials replacing or partially replacing cement & aggregate. It is observed from the study that compressive strength of pervious concrete is increasing by introducing fly ash, furnace slag, and rice husk ash, silica fume, and solid waste (glass powder, ceramic waste, bottom ash). Whereas compressive strength is decreasing by addition of rubberized materials. Permeability is increasing with furnace slag, ceramic waste but glass powder, silica fume has no effect on permeability. Though rubberized materials decreases the tensile strength and compressive strength of pervious concrete, it increases the abrasion resistance & freezing-thawing resistance. Partial addition of rice husk ash, furnace slag, silica fume, glass powder also enhance tensile strength of pervious concrete. All the above mentioned materials are environment friendly but solid waste, furnace slag and silica fume has the highest contribution to the strength and permeability of pervious concrete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.