Coupling quantum emitters and nanostructures, in particular cold atoms and optical waveguides, has recently raised a large interest due to unprecedented possibilities of engineering light-matter interactions. In this work, we propose a new type of periodic dielectric waveguide that provides strong interactions between atoms and guided photons with an unusual dispersion. We design an asymmetric comb waveguide that supports a slow mode with a quartic (instead of quadratic) dispersion and an electric field that extends far into the air cladding for an optimal interaction with atoms. We compute the optical trapping potential formed with two guided modes at frequencies detuned from the atomic transition. We show that cold Rubidium atoms can be trapped as close as 100 nm from the structure in a 1.3-mK-deep potential well. For atoms trapped at this position, the emission into guided photons is largely favored, with a beta factor as high as 0.88 and a radiative decay rate into the slow mode 10 times larger than the free-space decay rate. These figures of merit are obtained at a moderately low group velocity of c/50.
Novel platforms interfacing trapped cold atoms and guided light in nanoscale waveguides are a promising route to achieve a regime of strong coupling between light and atoms in single pass, with applications to quantum non-linear optics and quantum simulation. A strong challenge for the experimental development of this emerging waveguide-QED field of research is to combine facilitated optical access for atom transport, atom trapping via guided modes and robustness to inherent nanofabrication imperfections. In this endeavor, here we propose to interface Rubidium atoms with a photonic crystal waveguide based on a large-index GaInP slab. With a specifically tailored half-W1 design, we show that a large coupling to the waveguide can be obtained and guided modes can be used to form two-color dipole traps for atoms at about 100 nm from the edge of the structure. This optimized device should greatly improve the level of experimental control and facilitate the atom integration.
We present a proposal for trapping Rubidium cold atoms near a novel design of a GaInP photonic crystal waveguide with characteristics optimized through systematic and inverse design. Purcell factors higher than unity are predicted.
Coupling quantum emitters and nanostructures, in particular cold atoms and waveguides, has recently raised a large interest due to unprecedented possibilities of engineering light-matter interactions. However, the implementation of these promising concepts has been hampered by various theoretical and experimental issues. In this work, we propose a new type of periodic dielectric waveguide that provides strong interactions between atoms and guided photons with an unusual dispersion. We design an asymmetric comb waveguide that supports a slow mode with a quartic (instead of quadratic) dispersion and an electric field that extends far into the air cladding for an optimal interaction with atoms. We compute the optical trapping potential formed with two guided modes at frequencies detuned from the atomic transition. We show that cold Rubidium atoms can be trapped as close as 100 nm from the structure in a 1.3-mK-deep potential well. For atoms trapped at this position, the emission into guided photons is largely favored, with a beta factor as high as 0.88 and a radiative decay rate into the slow mode 10 times larger than the free-space decay rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.