Microbial fuel cell consisting two main components which are anode and cathode materials. In the microbial fuel cell, both anode and cathode compartments are separated with a separator. Anode generates the protons and electrons while cathode converts protons into water with the presence electrons and oxygen. During the Microbial fuel cell operation, the performance of anode is very crucial due to it provides the protons and electrons. Hence, the high efficiency microbial fuel cell is very related with the high anode performance. This work addressed to the enrichment process of electroactive bacteria (EAB) in anode of microbial fuel cell. In this work, some parameters such as current generations, , and pH changes were used to assess the enrichment process of EAB was reached. In addition, the presence of EAB on the anode surface was identified based on the morphology of anode surface. The removal of COD and the pH value were determined by using the American public health analysis method and pH tester, respectively. The morphology of anode surface was analysed by using a scanning electron microscope. Whereas, current generation was tested by using a mustimeter. The removal of COD and final pH were obtained 71.4 % and 5.7, respectively. The optimum current generation was observed 0.19 mA. The surface morphology of anode before enriched with microbes was clear surface, while after enriched with microbes was attached by microbes. The removal of COD, pH changes, current generation and morphology of anode surface could be used to assess the EAB in the anode compartment. Keywords: Microbial fuel cell; anode; cathode; electroactive bacteria; pH changes.
High organic pollutant in tofu wastewater (TWW) raises a negative impact on environmental sustainability and health. Therefore, the TWW must be treated before it is discharged into the environment. Microbial electrolysis cell (MEC) is one of the green technologies that can be used to treat wastewater and generate hydrogen as well. This work tries to investigate the performance of MEC based on the decrement of organic pollutants in TWW. Some important parameters of organic pollutants in TWW such as chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids (TSS), total dissolved solids (TDS), total solid (TS), and pH were evaluated before and after MEC operation. The results showed that the COD and BOD levels decreased around 56% and 35% while pH increased from 7.90 to 7.16. Additionally, the TSS, TDS, and TS decreased by around 35.0%, 45.5%, and 33.2%. In addition, the optimum hydrogen yield (YH2) and hydrogen production rate (QH2) were obtained at 114 ± 0.1 mL H2/g COD 360 ± 20 mL H2/L/d. Overall, the MEC system could be used to reduce the level of organic pollutants in TWW and generated H2 at the same time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.