Tumor necrosis factor alpha (TNFα) is a pro-inflammatory cytokine that triggers the expression of inflammatory molecules, including other cytokines and cell adhesion molecules. TNFα induces the expression of intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 (VCAM-1). VCAM-1 was originally identified as a cell adhesion molecule that helps regulate inflammation-associated vascular adhesion and the transendothelial migration of leukocytes, such as macrophages and T cells. Recent evidence suggests that VCAM-1 is closely associated with the progression of various immunological disorders, including rheumatoid arthritis, asthma, transplant rejection, and cancer. This review covers the role and relevance of VCAM-1 in inflammation, and also highlights the emerging potential of VCAM-1 as a novel therapeutic target in immunological disorders and cancer.
Catalase, glutathione peroxidase1 (GPx1), and peroxiredoxin (Prx) II are the principal enzymes responsible for peroxide elimination in RBC. We have now evaluated the relative roles of these enzymes by studying inactivation of GPx1 and Prx II in human RBCs. Mass spectrometry revealed that treatment of GPx1 with H 2 O 2 converts the selenocysteine residue at its active site to dehydroalanine (DHA). We developed a blot method for detection of DHA-containing proteins, with which we observed that the amount of DHA-containing GPx1 increases with increasing RBC density, which is correlated with increasing RBC age. Given that the conversion of selenocysteine to DHA is irreversible, the content of DHA-GPx1 in each RBC likely reflects total oxidative stress experienced by the cell during its lifetime. Prx II is inactivated by occasional hyperoxidation of its catalytic cysteine to cysteine sulfinic acid during catalysis. We believe that the activity of sulfiredoxin in RBCs is sufficient to counteract the hyperoxidation of Prx II that occurs in the presence of the basal level of H 2 O 2 flux resulting from hemoglobin autoxidation. If the H 2 O 2 flux is increased above the basal level, however, the sulfinic Prx II begins to accumulate. In the presence of an increased H 2 O 2 flux, inhibition of catalase accelerated the accumulation of sulfinic Prx II, indicative of the protective role of catalase.
Mammalian phospholipase D (PLD) plays a key role in several signal transduction pathways and is involved in many diverse functions. To elucidate the complex molecular regulation of PLD, we investigated PLD-binding proteins obtained from rat brain extract. Here we report that a 43-kDa protein in the rat brain, -actin, acts as a major PLD2 direct-binding protein as revealed by peptide mass fingerprinting in combination with matrixassisted laser desorption ionization/time-of-flight mass spectrometry. We also determined that the region between amino acids 613 and 723 of PLD2 is required for the direct binding of -actin, using bacterially expressed glutathione S-transferase fusion proteins of PLD2 fragments. Intriguingly, purified -actin potently inhibited both phosphatidylinositol-4,5-bisphosphateand oleate-dependent PLD2 activities in a concentrationdependent manner (IC 50 ؍ 5 nM). In a previous paper, we reported that ␣-actinin inhibited PLD2 activity in an interaction-dependent and an ADP-ribosylation factor 1 In vitro binding analyses showed that -actin could displace ␣-actinin binding to PLD2, demonstrating independent interaction between cytoskeletal proteins and PLD2. Furthermore, ARF1 could steer the PLD2 activity in a positive direction regardless of the inhibitory effect of -actin on PLD2. We also observed that -actin regulates PLD1 and PLD2 with similar binding and inhibitory potencies. Immunocytochemical and co-immunoprecipitation studies demonstrated the in vivo interaction between the two PLD isozymes and actin in cells. Taken together, these results suggest that the regulation of PLD by cytoskeletal proteins, -actin and ␣-actinin, and ARF1 may play an important role in cytoskeleton-related PLD functions. Mammalian phospholipase D (PLD)1 hydrolyzes phosphatidylcholine (PC) to generate phosphatidic acid and choline in response to a variety of signals, which can include hormones, neurotransmitters, and growth factors (1). phosphatidic acid itself has been shown to be an intracellular lipid second messenger and to be involved in multiple physiological events such as the promotion of mitogenesis, stimulation of respiratory bursts, secretory processes, actin cytoskeletal reorganization, and the activation of Raf-1 kinase and phosphatidylinositol 4-phosphate (PtdIns4P) 5-kinase isoforms in a large number of cells. These relationships suggest that agonist-induced PLD activation may play roles in multiple signaling events (2-7). The mammalian PLD isozymes identified thus far, PLD1 and PLD2, share a sequence homology of ϳ50%, but they have very different regulatory properties. PLD1 has low basal activity in the presence of phosphatidylinositol-4,5-bisphosphate (PIP 2 ) and can be activated by several cytosolic factors including protein kinase C ␣ and small GTP-binding proteins such as Rho A, Rac-1, ARF1, RalA, and CDC42 (8 -15). PLD2 also depends on PIP 2 but has a higher basal activity than PLD1 (16), and it has been proposed that PLD2 may be closely associated with different cellular inhibitors. Alth...
Caveolae are small plasma membrane invaginations that have been implicated in cell signaling, and caveolin is a principal structural component of the caveolar membrane. Previously we have demonstrated that protein kinase Calpha (PKCalpha) directly interacts with phospholipase D1 (PLD1), activating the enzymatic activity of PLD1 in the presence of phorbol 12-myristate 13-acetate (PMA) [Lee, T. G., et al. (1997) Biochim. Biophys. Acta 1347, 199-204]. In this study, using a detergent-free procedure for the purification of a caveolin-enriched membrane fraction (CEM) and immunoblot analysis, we show that PLD1 is enriched in the CEMs of 3Y1 rat fibroblasts. Purified PLD1 directly bound to a glutathione S-transferase-caveolin-1 fusion protein in in vitro binding assays. The association of PLD1 with caveolin-1 could be completely eliminated by preincubation of PLD1 with an oligopeptide corresponding to the scaffolding domain (amino acids 82-101) of caveolin-1, indicating that caveolin-1 interacts with PLD1 through the scaffolding domain. The peptide also inhibited PKCalpha-stimulated PLD1 activity and the interaction between PLD1 and PKCalpha with an IC50 of 0.5 microM. PMA elicits translocation of PKCalpha to the CEMs, inducing PLD activation through the interaction of PKCalpha with PLD1 in the CEMs. Caveolin-1 also coimmunoprecipitated with PLD1 in the absence of PMA, and the amounts of coimmunoprecipitated caveolin-1 decreased in response to treatment with PMA. Taken together, our results suggest a new mechanism for the regulation of the PKCalpha-dependent PLD activity through the molecular interaction between PLD1, PKCalpha, and caveolin-1 in caveolae.
Mammalian phospholipase D (PLD) has been implicated in the cellular signal transduction pathways leading to diverse physiological events and known to be regulated by many cellular factors. To identify the proteins that interact with PLD, we performed a protein overlay assay with fractions obtained from the sequential column chromatographic separation of rat brain cytosol using purified PLD2 as a probe. A protein of molecular mass 40 kDa, which was detected by anti-PLD antibody with overlaying of the purified PLD2, is shown to be aldolase C by peptide-mass fingerprinting with matrix-assisted laser desorption/ionization-time-of flight mass spectrometry (MALDI-TOF-MS). Aldolase A also showed similar binding properties as aldolase C and was co-immunoprecipitated with PLD2 in COS-7 cells overexpressing PLD2 and aldolase A. The PH domain corresponding to amino acids 201-310 of PLD2 was necessary for the interaction observed in vitro, and aldolase A was found to interact with the PH domain of PLD2 specifically, but not with other PH domains. PLD2 activity was inhibited by the presence of purified aldolase A in a dose-dependent manner, and the inhibition by 50% was observed by the addition of less than micromolar aldolase A. Moreover, the inclusion of the aldolase metabolites fructose 1,6-bisphosphate (F-1,6-P) or glyceraldehyde 3-phosphate (G-3-P) resulted in an enhanced interaction between PLD2 and aldolase A with a concomitant increase in the potential ability of aldolase A to inhibit PLD2, which suggests the existence of a possible regulation of the interaction by the change of intracellular concentrations of glycolytic metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.