A well-developed multi-tier polygonal fault system is located in the Great South Basin offshore New Zealand’s South Island. The system has been characterised using a high-quality three-dimensional seismic survey tied to available exploration boreholes using regional two-dimensional seismic data. In this study area, two polygonal fault intervals are identified and analysed, Tier 1 and Tier 2. Tier 1 coincides with the Tucker Cove Formation (Late Eocene) with small polygonal faults. Tier 2 is restricted to the Paleocene-to-Late Eocene interval with a great number of large faults. In map view, polygonal fault cells are outlined by a series of conjugate pairs of normal faults. The polygonal faults are demonstrated to be controlled by depositional facies, specifically offshore bathyal deposits characterised by fine-grained clays, marls and muds. Fault throw analysis is used to understand the propagation history of the polygonal faults in this area. Tier 1 and Tier 2 initiate at about Late Eocene and Early Eocene, respectively, based on their maximum fault throws. A set of three-dimensional fault throw images within Tier 2 shows that maximum fault throws of the inner polygonal fault cell occurs at the same age, while the outer polygonal fault cell exhibits maximum fault throws at shallower levels of different ages. The polygonal fault systems are believed to be related to the dewatering of sedimentary formation during the diagenesis process. Interpretation of the polygonal fault in this area is useful in assessing the migration pathway and seal ability of the Eocene mudstone sequence in the Great South Basin.
The main carbon dioxide (CO2) emissions in Thailand come from the energy sector. Gas-based power plants, including natural gas and biogas, are CO2 point sources, and are mostly located in the Khorat Plateau. Geological CO2 storage is an important element in the effort to reduce CO2 emissions from CO2 point sources. This study is a preliminary assessment of the geological CO2 storage potential of the onshore Khorat Plateau. A potential geological formation is screened and ranked in terms of its suitability as a CO2 storage site (storage optimization, risk minimization and feasibility). The results of this screening and ranking indicate that, among the tested sites in this study, the Khorat Permian carbonate is the most suitable for geological CO2 storage, followed by the Khorat Group sandstone, and Khorat evaporite. However, the Khorat Cenozoic basalts are not suitable for geological CO2 storage in the Khorat Plateau. The results from this study should advance the understanding of petroleum exploration and carbon capture and storage technology in Thailand, especially in the Khorat area. However, it should be noted that more subsurface studies are needed, and more criteria should be included in the future to improve the reliability of the assessment of geological CO2 storage potential in the Khorat Plateau.
In geoscience education, classroom instruction often relies mainly on textbooks, paper maps and outcrop photos. Many students have difficulty recognizing and interpreting real-world spatial relationship from those traditional teaching media because most geological phenomena require spatial visualization and object
The Wichianburi Sub-basin is currently the only productive area in the southern part of the Phetchabun Basin, central Thailand. It is structurally dominated by NNW-SSE to NNE-SSW trending normal faults as a result of multistage rifting since the Late Oligocene. Half-graben and full-graben basin geometries can be observed from 2D regional seismic sections. In this study, structural restoration techniques were applied to validate the structural interpretation of the original hardcopy of the 2D seismic sections. Stratigraphic information is compiled from published papers and well reports. Our results revealed that most of the deformation was concentrated during the Late Oligocene. Main depocenters for the syn-rift sediments focused in the basin center along the west-dipping normal faults. These faults cut the prerift section and their orientations were possibly controlled by the Permo-Triassic fabrics that underlie the Phetchabun Basin. By measuring the length of the profiles before and after faulting, the restorations show that the extensions of the Wichianburi Subbasin decrease from 12.30% during the main rift phase (Late Oligocene to Early Miocene) to 2.53% during the second phase of rifting. Rifting only focused in the basin center with the development of NNW-SSE to N-S trending intrarift faults. Since the Middle Miocene, the Wichianburi Subbasin has developed under the tectonic phase of post-rift subsidence with interruption by intrusive activities.
Classic detachment zones in fold and thrust belts are generally defined by a weak lithology (typically salt or shale), often accompanied by high over-pressures. This study describes an atypical detachment that occurs entirely within a relatively strong Permian carbonate lithology, deformed during the Triassic Indosinian orogeny in Thailand under late diagenetic-anchimetamorphic conditions. The key differences between stratigraphic members that led to development of a detachment zone are bedding spacing and clay content. The lower, older, unit is the Khao Yai Member (KYM), which is a dark-gray to black, well-bedded, clay-rich limestone. The upper unit, the Na Phra Lan Member (NPM), comprises more massive, medium- to light-gray, commonly recrystallized limestones and marble. The KYM displays much tighter to even isoclinal, shorter-wavelength folds than the NPM. Pressure solution played a dominant role throughout the structural development—first forming early diagenetic bedding; later tectonic pressure solution preferentially followed this bedding instead of forming axial planar cleavage. The detachment zone between the two members is transitional over tens of meters. Moving up-section, tight to isoclinal folds with steeply inclined axial surfaces are replaced by folds with low-angle axial planes, thrusts, and thrust wedging, bed-parallel shearing, and by pressure solution along bedding-parallel seams (that reduce fold amplitude). In outcrops 100–300 m long, reduction of line-length shortening on folds from >50% to <10% shortening upwards indicates that deformation in the NPM is being accommodated differently from the KYM, probably predominantly by shortening on longer wavelength and/or spacing folds and thrusts, given the low amount of strain observed within the NPM, which excludes widespread layer-parallel thickening
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.