SUMMARY
There are multiple mechanisms of maintaining tolerance in the gut that protect the intestine from excessive inflammatory response to intestinal microorganisms. We report here that all four mammalian Peptidoglycan Recognition Proteins (PGRPs or Pglyrps) protect the host from colitis induced by dextran sulfate sodium (DSS). Pglyrp1−/−, Pglyrp2−/−, Pglyrp3−/−, and Pglyrp4−/− mice are all more sensitive than wild type (WT) mice to DSS-induced colitis due to changes to more inflammatory gut microflora, higher production of interferon-γ and interferon-inducible genes, and increase in NK cells in the colon upon initial exposure to DSS, which leads to severe hyperplasia of the lamina propria, loss of epithelial cells, and ulceration in the colon. Thus in WT mice PGRPs protect the colon from early inflammatory response and loss of the barrier function of intestinal epithelium by promoting normal bacterial flora and by preventing damaging production of interferon-γ by NK cells in response to injury.
SUMMARY
Peptidoglycan recognition proteins (PGRPs) are structurally conserved from insects to mammals. Insect PGRPs have many host defense functions, whereas mammalian PGRPs only have bactericidal and amidase activities. We asked whether mammalian PGRPs have immunomodulating activities in peptidoglycan-induced arthritis and whether they interact with other innate immunity receptors. We demonstrate that PGLYRP-2 and Nod2 are both required for induction of arthritis by peptidoglycan. The sequence of events in peptidoglycan-induced arthritis is activation of Nod2, local expression of PGLYRP-2, chemokine production, and recruitment of neutrophils into the limbs, which induces acute arthritis. This proinflammatory function is unique for PGLYRP-2 and is not exhibited by other PGRPs, of which one (PGLYRP-1) is anti-inflammatory. TLR4 and MyD88 are required for maturation of neutrophils before peptidoglycan challenge. Our results reveal new in vivo functions of PGRPs, Nod2, and TLR4, and demonstrate in vivo interdependence of these three families of pattern recognition molecules in local inflammation.
Toll-like receptors (TLRs) recognize microbial components and trigger the signaling cascade that activates the innate and adaptive immunity. TLR adaptor molecules play a central role in this cascade; thus, we hypothesized that overexpression of TLR adaptor molecules could mimic infection without any microbial components. Dual-promoter plasmids that carry an antigen and a TLR adaptor molecule such as the Toll-interleukin-1 receptor domaincontaining adaptor-inducing beta interferon (TRIF) or myeloid differentiation factor 88 (MyD88) were constructed and administered to mice to determine if these molecules can act as an adjuvant. A DNA vaccine incorporated with the MyD88 genetic adjuvant enhanced antigen-specific humoral immune responses, whereas that with the TRIF genetic adjuvant enhanced cellular immune responses. Incorporating the TRIF genetic adjuvant in a DNA vaccine targeting the influenza HA antigen or the tumor-associated antigen E7 conferred superior protection. These results indicate that TLR adaptor molecules can bridge innate and adaptive immunity and potentiate the effects of DNA vaccines against virus infection and tumors.
Flagellin is a key component of the flagella of many pathogens, including Pseudomonas aeruginosa. Flagellin is an attractive vaccine candidate because it is readily produced and manipulated as a recombinant protein and has intrinsic adjuvant activity mediated through TLR5. Although DNA vaccines encoding native Pseudomonas B-type (FliC) or A-type (FlaA) flagellin are strongly immunogenic, the resultant Ab response interferes with the interaction of homologous flagellin with TLR5. This reduces the ability of the host to clear homologous, but not heterologous, flagellin-expressing P. aeruginosa. To circumvent this problem, a DNA vaccine encoding a mutant FliC R90A flagellin was developed. The mutant Ag encoded by this vaccine was highly immunogenic, but its ability to interact with TLR5 was reduced by >100-fold. Vaccination with this flagellin mutant DNA vaccine induced cross-reactive Abs against both FliC and FlaA, but few Abs capable of interfering with TLR5 activation. The flagellin mutant DNA vaccine provided excellent protection against both FliC- and FlaA-expressing P. aeruginosa. These findings suggest that vaccines against flagellated pathogens should avoid inducing Abs against TLR5 and raise the possibility that flagellated bacteria evade host elimination by facilitating the production of Abs that reduce the host’s ability to mount an innate immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.