Purpose: To determine the safety and tolerability of olaparib with cisplatin and gemcitabine, establish the maximum tolerated dose (MTD), and evaluate the pharmacodynamic and pharmacokinetic profile of the combination.Experimental Design: We conducted a phase I study of olaparib with cisplatin and gemcitabine in patients with advanced solid tumors. Treatment at dose level 1 (DL1) consisted of olaparib 100 mg orally every 12 hours on days 1 to 4, gemcitabine 500 mg/m 2 on days 3 and 10, and cisplatin 60 mg/m 2 on day 3. PAR levels were measured in peripheral blood mononuclear cells (PBMC).Results: Dose-limiting toxicities (DLT) in two of three patients at DL1 included thrombocytopenia and febrile neutropenia. The protocol was amended to enroll patients treated with 2 prior severely myelosuppressive chemotherapy regimens and treated with olaparib 100 mg once daily on days 1 to 4 (DLÀ1). No DLTs were seen in six patients at DLÀ1. Because of persistent thrombocytopenia and neutropenia following a return to DL1, patients received 100 mg olaparib every 12 hours on day 1 only. No hematologic DLTs were observed; nonhematologic DLTs included gastrointestinal bleed, syncope, and hypoxia. Of 21 patients evaluable for response, two had partial response. Olaparib inhibited PARP in PBMCs and tumor tissue, although PAR levels were less effectively inhibited when olaparib was used for a short duration.Conclusions: Olaparib in combination with cisplatin and gemcitabine is associated with myelosuppression even at relatively low doses. Modified schedules of olaparib in chemotherapy naive patients will have to be explored with standard doses of chemotherapy.
Paclitaxel (PTX) is one of the most useful chemotherapeutic agents approved for several cancers, including ovarian, breast, pancreatic, and non-small cell lung cancer. However, it causes systemic side effects when administered parenterally. Photodynamic therapy (PDT) is a new strategy for treating local cancers using light and photosensitizer. Unfortunately, PDT is often followed by recurrence, due to incomplete ablation of tumors. To overcome these problems, we prepared the far-red light-activatable prodrug of PTX by conjugating photosensitizer via singlet oxygen-cleavable aminoacrylate linker. Tubulin polymerization enhancement and cytotoxicity of prodrugs were dramatically reduced. However, once illuminated with far-red light, the prodrug effectively killed SKOV-3 ovarian cancer cells through the combined effects of PDT and locally released PTX. Ours is the first PTX prodrug that can be activated by singlet oxygen using tissue penetrable and clinically useful far-red light, which kills the cancer cells through the combined effects of PDT and site-specific PTX chemotherapy.
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Sorafenib is a multikinase inhibitor with activity against B‐raf, C‐raf, VEGFR2, PDGFRβ and FGFR1. • Sorafenib is clinically approved for the treatment of renal cell carcinoma (RCC) and hepatocellular carcinoma (HCC). • The pharmacokinetics (PK) of sorafenib are highly variable between subjects. • Sorafenib exposure increases less than dose proportionally (likely due to limited solubility). • Sorafenib undergoes enterohepatic recycling (EHC). WHAT THIS STUDY ADDS • This is the first study to characterize the PK of sorafenib using a model based on sorafenib's known disposition characteristics such as delayed/solubility‐limited GI absorption and EHC. The parameterization of the EHC model used a square wave function to describe the gall bladder emptying. • This study evaluated the effect of baseline bodyweight, BSA, age, gender, liver function parameters, kidney function parameters and genotype with respect to CYP3A4*1B, CYP3A5*3C, UGT1A9*3 and UGT1A9*5 on sorafenib PK. No clinically important covariates were identified. • This model can be used to simulate and explore alternative dosing regimens and to develop exposure–response relationships for sorafenib. AIMS To characterize the pharmacokinetics (PK) of sorafenib in patients with solid tumours and to evaluate the possible effects of demographic, clinical and pharmacogenetic (CYP3A4*1B, CYP3A5*3C, UGT1A9*3 and UGT1A9*5) covariates on the disposition of sorafenib. METHODS PK were assessed in 111 patients enrolled in five phase I and II clinical trials, where sorafenib 200 or 400 mg was administered twice daily as a single agent or in combination therapy. All patients were genotyped for polymorphisms in metabolic enzymes for sorafenib. Population PK analysis was performed by using nonlinear mixed effects modelling (NONMEM). The final model was validated using visual predictive checks and nonparametric bootstrap analysis. RESULTS A one compartment model with four transit absorption compartments and enterohepatic circulation (EHC) adequately described sorafenib disposition. Baseline bodyweight was a statistically significant covariate for distributional volume, accounting for 4% of inter‐individual variability (IIV). PK model parameter estimates (range) for an 80 kg patient were clearance 8.13 l h−1 (3.6–22.3 l h−1), volume 213 l (50–1000 l), mean absorption transit time 1.98 h (0.5–13 h), fraction undergoing EHC 50% and average time to gall bladder emptying 6.13 h. CONCLUSIONS Overall, population PK analysis was consistent with known biopharmaceutical/PK characteristics of oral sorafenib. No clinically important PK covariates were identified.
BackgroundInfusion of sodium nitrite could provide sustained therapeutic concentrations of nitric oxide (NO) for the treatment of a variety of vascular disorders. The study was developed to determine the safety and feasibility of prolonged sodium nitrite infusion.MethodologyHealthy volunteers, aged 21 to 60 years old, were candidates for the study performed at the National Institutes of Health (NIH; protocol 05-N-0075) between July 2007 and August 2008. All subjects provided written consent to participate.Twelve subjects (5 males, 7 females; mean age, 38.8±9.2 years (range, 21–56 years)) were intravenously infused with increasing doses of sodium nitrite for 48 hours (starting dose at 4.2 µg/kg/hr; maximal dose of 533.8 µg/kg/hr). Clinical, physiologic and laboratory data before, during and after infusion were analyzed.FindingsThe maximal tolerated dose for intravenous infusion of sodium nitrite was 267 µg/kg/hr. Dose limiting toxicity occurred at 446 µg/kg/hr. Toxicity included a transient asymptomatic decrease of mean arterial blood pressure (more than 15 mmHg) and/or an asymptomatic increase of methemoglobin level above 5%. Nitrite, nitrate, S-nitrosothiols concentrations in plasma and whole blood increased in all subjects and returned to preinfusion baseline values within 12 hours after cessation of the infusion. The mean half-life of nitrite estimated at maximal tolerated dose was 45.3 minutes for plasma and 51.4 minutes for whole blood.ConclusionSodium nitrite can be safely infused intravenously at defined concentrations for prolonged intervals. These results should be valuable for developing studies to investigate new NO treatment paradigms for a variety of clinical disorders, including cerebral vasospasm after subarachnoid hemorrhage, and ischemia of the heart, liver, kidney and brain, as well as organ transplants, blood-brain barrier modulation and pulmonary hypertension.Clinical Trial Registration Information http://www.clinicaltrials.gov; NCT00103025
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.