Abstract-Deep learning has significantly advanced computer vision and natural language processing. While there have been some successes in robotics using deep learning, it has not been widely adopted. In this paper, we present a novel robotic grasp detection system that predicts the best grasping pose of a parallel-plate robotic gripper for novel objects using the RGB-D image of the scene. The proposed model uses a deep convolutional neural network to extract features from the scene and then uses a shallow convolutional neural network to predict the grasp configuration for the object of interest. Our multi-modal model achieved an accuracy of 89.21% on the standard Cornell Grasp Dataset and runs at real-time speeds. This redefines the state-of-the-art for robotic grasp detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.