A series of new 11-keto-β-boswellic acid were partially-synthesized by modifying the hydroxyl and carboxylic acid functional groups of ring A. The structures of the new analogs were confirmed by detailed spectral data analysis. Compounds 4, 5 and 9 exhibited potent anti-cancer results against two human tumor cancer cell lines having IC 50 value of MCF-7 (breast) and
Background:The development of anti-cancer drugs with the ability to inhibit brain metastasis through the blood-brain barrier (BBB) is substantially limited due to the lack of reliable in vitro models.Main Methods: In this study, the Geltrex-based Transwell and microfluidic BBB models were applied to screen the effect of β-boswellic acid (β-BA) on the metastasis of MDA-MB-231 cells through the BBB in static and dynamic conditions, respectively.Major Results: The toxicity assay revealed that β-BA deteriorates MDA-MB-231 cells, while β-BA had no detectable toxic effects on human umbilical vein endothelial cells (HUVECs) and astrocytes. Trans-endothelial electrical resistance evaluation showed sustainable barrier integrity upon treatment with β-BA. Vimentin expression in HUVECs, evaluated using western blot, confirmed superior barrier integrity in the presence of β-BA. The obtained results were confirmed using an invasion study with a cell tracker and a scanning electron microscope. β-BA significantly inhibited metastasis by 85%, while cisplatin (Cis), a positive control, inhibited cancer cell migration by 12% under static conditions. Upon applying a dynamic BBB model, it was revealed that β-BA-mediated metastasis inhibition was significantly higher than that mediated by Cis.
Conclusions and Implications:In summary, the current study proved the antimetastatic potential of β-BA in both static and dynamic BBB models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.