A compact, wide dual-band antenna designed to resonate at 2.25 GHz and 5.4 GHz is proposed in this paper. The proposed antenna is a monopole rectangular patch designed to operate at 5 GHz. This basic structure is modified by introducing a metamaterial-based interdigital capacitor reactive loading that exhibits dual-band characteristics at 2.25 GHz and 5.4 GHz. A bandwidth greater than 1.4 GHz at the two resonant frequencies is obtained. The compact size of the proposed antenna is 0.0989λ<sub>0</sub> × 0.0498λ<sub>0</sub>, where λ<sub>0</sub> is calculated at the first resonance. The antenna is etched on a FR4 substrate with dielectric constant <i>ɛ</i><sub><i>r</i></sub> = 4.4 and thickness of 1.6 mm. The simulated results exhibit considerable gain and wide impedance bandwidth at the resonant frequencies. Monopole-like radiation patterns are obtained at both the operating frequencies. The designed antenna can be applied in wireless local area networks and Wi-MAX wireless communications.
This paper presents design analysis of a compact CPW-fed Wearable Textile Antenna with Dual Band notched characteristics for UWB applications. The proposed wearable textile antenna is designed on two different dielectric substrates; leather and denim with copper foil as conducting element. The performances of the designed textile antenna are compared on two substrates. Band-notched filtering characteristics are achieved by inserting semicircular split ring resonators on the conducting element. The first notch band is obtained from 2.3-2.5 GHz for Bluetooth application band, and the second notch band is obtained from 3.3-3.6 GHz for WiMAX application band. The simulated and measured frequency results show that the antenna has an impedance bandwidth of 1.8-10 GHz and reflection coefficient less than −10 dB, except at the two eliminating bands. The proposed antenna is designed and simulated using Ansys HFSS Electromagnetic Simulator. The prototype of the antenna has been developed on the denim substrate, and its performance is measured and compared with the simulated ones.
This paper reports design and investigations on a planar multi-band frequency-and pattern-reconfigurable antenna by use of PIN diodes. The reconfiguration mechanism is achieved by changing the controlled activation of the slots placed on a circular disk which is fed by Coplanar Waveguide feed. The antenna is symmetrical along the longitudinal axis and consists of seven PIN diodes on each half of the circle cutting the longitudinal axis. A total of 15 PIN diodes are used to make the antenna operate in 7 different modes. A beam shape pattern reconfigurability is achieved by operating the antenna in all the modes. The basic antenna is a circular disk without slots and is designed to operate at 2.4GHz. Frequency reconfigurability is achieved by changing the electrical length of the slot by activating the switches in appropriate positions in different operating modes. Pattern reconfigurability is achieved by maintaining the same overall electrical length in each operating mode but changing the switch positions orient in a particular direction in each half of the circle. The investigative simulations were carried out using Ansys HFSS. The proposed antenna resonates is applicable to WiMAX, Wi-Fi, WLAN wireless services.
This paper presents different reconfigurable antennas with frequency, polarization, and pattern diversities. All the antennas have a very simple, novel, and compact structures, which are used for different wireless communication applications. These antennas employ switching for obtaining different reconfigurations. At first, an E-shaped antenna is designed for multi-band frequency reconfigurability. Second, circular and rectangular-shaped patch antennas are designed for achieving diversity in polarization. At last, a pattern reconfigurable antenna is designed with multiport excitation. These antenna performances are analyzed using various parameters such as return loss, radiation pattern, voltage standing wave ratio (VSWR), and gain. The prototypes of the antennas are fabricated and measured results along with simulated ones are presented. Both the results are in good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.