Molecularly imprinted polymer (MIP) monoliths with (S)-ornidazole ((S)-ONZ) as the template molecule have been designed and prepared by the simple thermal polymerization of methacrylic acid, 4-vinylpyridine, and ethylene dimethacrylate in the presence of a binary porogenic mixture of toluene and dodecanol. The influences of polymerization mixture composition on the chiral recognition of ONZ have been evaluated, and the imprint effect in the optimized MIP monolith has been clearly demonstrated. The new monolithic stationary phase with optimized porous property and good selectivity was used for the chiral separation of ONZ by pressurized CEC. The pressurized CEC conditions were also optimized to obtain the good chiral separation. The enantiomers were rapidly separated within 9 min on the MIP-based chiral stationary phase, whereas the chiral separation was not obtained on the nonimprinted polymer. Additionally, the proposed method has been successfully applied to the chiral separation of ONZ in tablet samples by injection of the crude sample. The cross-selectivity for similar antiparasitic drug was investigated. The results indicated that the chiral separation of secnidazole could also be obtained on the optimized MIP monolith within 14 min.
A polymethacrylate-based molecularly imprinted monolithic column bearing mixed functional monomers, using non-covalent imprinting approach, was designed for the rapid separation of nitroimidazole compounds. The new monolithic column has been prepared via simple in situ polymerization of 2-hydroxyethyl methacrylate, dimethylaminoethyl methacrylate and ethylene dimethacrylate, using (S)-ornidazole ((S)-ONZ) as template in a binary porogenic mixture consisting of toluene and dodecanol. The composition of the polymerization mixture was systematically altered and optimized by altering the amount of monomers as well as the composition of the porogenic solvent. The column performance was evaluated in pressure-assisted CEC mode. Separation conditions such as pH, voltage, amount of organic modifier and salt concentration were studied. The optimized monolithic column resulted in excellent separation of a group of structurally related nitroimidazole drugs within 10 min in isocratic elution condition. Column efficiencies of 99 000, 80 000, 103 000, 60 000 and 99 000 plates/m were obtained for metronidazole, secnidazole, ronidazole, tinidazole and dimetridazole, respectively. Parallel experiments were carried out using molecularly imprinted and non-imprinted capillary columns. The separation might be the result of combined effects including hydrophobic, hydrogen bonding and the imprinting cavities on the (S)-ONZ-imprinted monolithic column.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.