In recent years, investigations into the biochemistry of insect-associated bacteria have increased. When combined with analytical dereplication processes, these studies provide a powerful strategy to identify structurally and/or biologically novel compounds. Non-ribosomally synthesized cyclic peptides have a broad bioactivity spectrum with high medicinal potential. Here, we report the discovery of three new cyclic tripeptides: natalenamides A–C (compounds 1–3). These compounds were identified from the culture broth of the fungus-growing termite-associated Actinomadura sp. RB99 using a liquid chromatography (LC)/ultraviolet (UV)/mass spectrometry (MS)-based dereplication method. Chemical structures of the new compounds (1–3) were established by analysis of comprehensive spectroscopic methods, including one-dimensional (1H and 13C) and two-dimensional (1H-1H-COSY, HSQC, HMBC) nuclear magnetic resonance spectroscopy (NMR), together with high-resolution electrospray ionization mass spectrometry (HR-ESIMS) data. The absolute configurations of the new compounds were elucidated using Marfey’s analysis. Through several bioactivity tests for the tripeptides, we found that compound 3 exhibited significant inhibitory effects on 3-isobutyl-1-methylxanthine (IBMX)-induced melanin production. The effect of compound 3 was similar to that of kojic acid, a compound extensively used as a cosmetic material with a skin-whitening effect.
Reactive oxygen species (ROS) are generated during skin aging, including intrinsic (chronologic aging) and extrinsic aging (photoaging). Therefore, antioxidants that inhibit ROS generation can delay skin aging. In this study, we evaluated the potential anti-skin aging effect of (-)-phenolic compounds isolated from the root bark of Ulmus davidiana var. japonica. We preferentially investigated the possible preventive effects of isolates against the degradation of skin extracellular matrix. Among the isolates, (-)-catechin suppressed the activity of collagenase MMP-1, and reversed the degradation of collagen induced by tumor necrosis factor-α (TNF-α) in normal human dermal fibroblast. This action mechanism of (-)-catechin was validated by the suppression of tumor necrosis factor-α-induced accumulation of ROS and activation of mitogen-activated protein kinases, protein kinase B (Akt), and cyclooxygenase-2 (COX-2). The proinflammatory cytokines upregulate inflammatory reactions, and ultimately promote aging-related reactions. In this milieu, we demonstrated that (-)-catechin decreased the expression and secretion of proinflammatory cytokines, including interleukin (IL)-1β and IL-6. In conclusion, (-)-catechin is a candidate to ameliorate both intrinsic and extrinsic skin aging.
Cordyceps militaris is a well-known medicinal mushroom. It is non-toxic and has clinical health benefits including cancer inhibition. However, the anticancer effects of C. militaris cultured in brown rice on breast cancer have not yet been reported. In this study, we simultaneously investigated the anticancer effects of cordycepin and an extract of C. militaris cultured in brown rice on MCF-7 human breast cancer cells using a cell viability assay, cell staining with Hoechst 33342, and an image-based cytometric assay. The C. militaris concentrate exhibited significant MCF-7 cell inhibitory effects, and its IC50 value was 73.48 µg/mL. Cordycepin also exhibited significant MCF-7 cell inhibitory effects, and its IC50 value was 9.58 µM. We applied network pharmacological analysis to predict potential targets and pathways of cordycepin. The gene set enrichment analysis showed that the targets of cordycepin are mainly associated with the hedgehog signaling, apoptosis, p53 signaling, and estrogen signaling pathways. We further verified the predicted targets related to the apoptosis pathway using western blot analysis. The C. militaris concentrate and cordycepin exhibited the ability to induce apoptotic cell death by increasing the cleavage of caspase-7 -8, and -9, increasing the Bcl-2-associated X protein/ B-cell lymphoma 2 (Bax/Bcl-2) protein expression ratio, and decreasing the protein expression of X-linked inhibitor of apoptosis protein (XIAP) in MCF-7 cells. Consequently, the C. militaris concentrate and cordycepin exhibited significant anticancer effects through their ability to induce apoptosis in breast cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.