Flaxseed accumulates in its seedcoat a macromolecular complex composed of lignan (secoisolariciresinol diglucoside, SDG), flavonol (herbacetin diglucoside, HDG) and hydroxycinnamic acids (p-couramic, caffeic and ferulic acid glucosides). Their antioxidant and/or cancer chemopreventive properties support their interest in human health and therefore, the demand for their extraction. In the present study, ultrasound-assisted extraction (UAE) of flaxseed phenolic compounds was investigated. Scanning Electron Microscopy imaging and histochemical analysis revealed the deep alteration of the seedcoat ultrastructure and the release of the mucilage following ultrasound treatment. Therefore, this method was found to be very efficient for the reduction of mucilage entrapment of flaxseed phenolics. The optimal conditions for UAE phenolic compounds extraction from flaxseeds were found to be: water as solvent supplemented with 0.2N of sodium hydroxide for alkaline hydrolysis of the SDG-HMG complex, an extraction time of 60 min at a temperature of 25°C and an ultrasound frequency of 30 kHz. Under these optimized and validated conditions, highest yields of SDG, HDG and hydroxycinnamic acid glucosides were detected in comparison to other published methods. Therefore, the procedure presented herein is a valuable method for efficient extraction and quantification of the main flaxseed phenolics. Moreover, this UAE is of particular interest within the context of green chemistry in terms of reducing energy consumption and valuation of flaxseed cakes as by-products resulting from the production of flax oil.
Linum flavum hairy root lines were established from hypocotyl pieces using Agrobacterium rhizogenes strains LBA 9402 and ATCC 15834. Both strains were effective for transformation but induction of hairy root phenotype was more stable with strain ATCC 15834. Whereas similar accumulation patterns were observed in podophyllotoxin-related compounds (6-methoxy-podophyllotoxin, podophyllotoxin and deoxypodophyllotoxin), significant quantitative variations were noted between root lines. The influence of culture medium and various treatments (hormone, elicitation and precursor feeding) were evaluated. The highest accumulation was obtained in Gamborg B5 medium. Treatment with methyl jasmonate, and feeding using ferulic acid increased the accumulation of aryltetralin lignans. These results point to the use of hairy root culture lines of Linum flavum as potential sources for these valuable metabolites as an alternative, or as a complement to Podophyllum collected from wild stands.
Painted nettle (Plectranthus scutellarioides (L.) R.Br.) is an ornamental plant belonging to Lamiaceae family, native of Asia. Its leaves constitute one of the richest sources of trans-rosmarinic acid, a well-known antioxidant and antimicrobial phenolic compound. These biological activities attract interest from the cosmetic industry and the demand for the development of green sustainable extraction processes. Here, we report on the optimization and validation of an ultrasound-assisted extraction (USAE) method using ethanol as solvent. Following preliminary single factor experiments, the identified limiting extraction parameters (i.e., ultrasound frequency, extraction duration, and ethanol concentration) were further optimized using a full factorial design approach. The method was then validated following the recommendations of the association of analytical communities (AOAC) to ensure the precision and accuracy of the method used to quantify trans-rosmarinic acid. Highest trans-rosmarinic acid content was obtained using pure ethanol as extraction solvent following a 45-minute extraction in an ultrasound bath operating at an ultrasound frequency of 30 kHz. The antioxidant (in vitro radical scavenging activity) and antimicrobial (directed toward Staphylococcus aureus ACTT6538) activities were significantly correlated with the trans-rosmarinic acid concentration of the extract evidencing that these key biological activities were retained following the extraction using this validated method. Under these conditions, 110.8 mg/g DW of trans-rosmarinic acid were extracted from lyophilized P. scutellarioides leaves as starting material evidencing the great potential of this renewable material for cosmetic applications. Comparison to other classical extraction methods evidenced a clear benefit of the present USAE method both in terms of yield and extraction duration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.