Paulownia tomentosa, a woody plant that is widely found in Pakistan and in other regions of the world, was used as a raw material to prepare activated carbon using chemical and physical activation methods. Adsorption of the dyes- acid red 4 and methylene blue onto the prepared activated carbon were analyzed by batch experiments. The impacts of different adsorption parameters such as pH, temperature, contact time, initial dye concentration and adsorbent dosage were also evaluated. Equilibrium data were fitted into various isotherm models such as: Langmuir, Temkin and Freundlich. High regression values were achieved with Langmuir isotherm model. Different kinetic adsorption models such as pseudo-first-order, pseudo-second-order and intra-particle diffusion model models were applied. The adsorption kinetics was found to be best-fitted into pseudo-second-order kinetic model. The optimum pH for acid red 4 was around 1 while for methylene blue it was 8. The optimum adsorbent dosage was 0.3 g for both dyes used. The activation energy (Ea) values were 30.57 and 3.712 kJ/mol, respectively for acid red 4 and methylene blue while the enthalpy (ΔH) and entropy (ΔS) values were correspondingly as 24.88/1.1927 kJ/mol and −2843.32/−0.329 J·mol/K for the mentioned dyes. The experimental result showed that the prepared activated carbon was the best in the removal of acid red 4 and methylene blue from aqueous media and therefore, could be preferably used as cheap adsorbent in wastewater treatment.
In this study palladium-nickel (Pd-Ni) nanoparticles supported on carbon and cerium oxide (Pd-Ni/AC-CeO2) were synthesized by a transfer phase method and characterized by scanning electronic microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). The XRD and SEM data concluded the presence of alloy formation between Pd and Ni. The synthesized particles were used as an adsorbent for removal of azo dye acid orange-8 (AO-8) from water and were found to be effective in removal (over 90% removal efficiency) of the selected dye. Different kinetics and equilibrium models were applied to calculate the adsorption parameters. The most suitable model that best fitted the equilibrium data was the Langmuir model and maximum adsorption capacities were 666.6, 714 and 769 mg/g at 293, 313 and 333 K, respectively, with R2 values closed to 1 while in the case of the kinetics data the best fit was obtained with a pseudo-second order kinetics model with a high R2 value. Furthermore, the adsorption thermodynamics parameters such as free energy, enthalpy, and entropy were calculated and the adsorption process was to found be exothermic with a value of ΔH° (−7.593 kJ mol−1), spontaneous as ΔG° values were negative (−18.7327, −19.4870, and −20.584 kJ/mol at 293, 313 and 333 K, respectively). A positive entropy change ΔS° with a value of 0.0384 kJ /mol K indicates increased disorder at the solid–solution interface during the adsorption process. An attempt was made to recycle the Pd-Ni/AC-CeO2 with suitable solvents and the recycled adsorbent was reused for 6 cycles with AO-8 removal efficiency up to 80%. Based on findings of the study, the synthesized adsorbent could effectively be used for the removal of other pollutants from wastewater, however, further studies are needed to prove the mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.