The human gastrointestinal (GI) tract is an important part of the body. According to World Health Organization (WHO) research, GI tract infections kill 1.8 million people each year. In the year 2019, almost 5 million individuals were detected with gastrointestinal disease. Radiation therapy has the potential to improve cure rates in GI cancer patients. Radiation oncologists direct x-ray beams at the tumour while avoiding the stomach and intestines. The current objective is to direct the x-ray beam toward the malignancy while avoiding the stomach and intestines in order to improve dose delivery to the tumour. This study offered a technique for segmenting GI tract organs (small bowel, big intestine, and stomach) to assist radio oncologists to treat cancer patients more quickly and accurately. The suggested model is a U-Net model designed from scratch and used for the segmentation of a small size of images to extract the local features more efficiently. Furthermore, in the proposed model, six transfer learning models were employed as the backbone of the U-Net topology. The six transfer learning models used are Inception V3, SeResNet50, VGG19, DenseNet121, InceptionResNetV2, and EfficientNet B0. The suggested model was analysed with model loss, dice coefficient, and IoU. The results specify that the suggested model outperforms all transfer learning models, with performance parameter values as 0.122 model loss, 0.8854 dice coefficient, and 0.8819 IoU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.