Digital technologies are considered to be an essential enabler of the circular economy in various industries. However, to date, very few studies have investigated which digital technologies could enable the circular economy in the built environment. This study specifically focuses on the built environment as one of the largest, most energy- and material-intensive industries globally, and investigates the following question: which digital technologies potentially enable a circular economy in the built environment, and in what ways? The research uses an iterative stepwise method: (1) framework development based on regenerating, narrowing, slowing and closing resource loop principles; (2) expert workshops to understand the usage of digital technologies in a circular built environment; (3) a literature and practice review to further populate the emerging framework with relevant digital technologies; and (4) the final mapping of digital technologies onto the framework. This study develops a novel Circular Digital Built Environment framework. It identifies and maps ten enabling digital technologies to facilitate a circular economy in the built environment. These include: (1) additive/robotic manufacturing, (2) artificial intelligence, (3) big data and analytics, (4) blockchain technology, (5) building information modelling, (6) digital platforms/marketplaces, (7) digital twins, (8) the geographical information system, (9) material passports/databanks, and (10) the internet of things. The framework provides a fruitful starting point for the novel research avenue at the intersection of circular economy, digital technology and the built environment, and gives practitioners inspiration for sustainable innovation in the sector.
The concept of Circular Economy (CE) and its application in the built environment is an emerging research field. Scholars approach CE from various perspectives covering a wide range of topics from material innovation to city-scale application. However, there is little research on CE implementation in housing stock, particularly that which is managed or owned by the social housing organisations (SHOs) and which offers opportunities to generate circular flows of materials at the portfolio level. This research focuses on Dutch SHOs and uses the Delphi method to examine CE practices in their asset management, as well as the main barriers to and potential enablers of its uptake. The analysis of two iterative rounds of expert questioning indicates that Dutch SHOs are in the early experimental phase in CE implementation. From the results, it is evident that organisational, cultural, and financial barriers are the most pressing ones that hinder the wider adoption of CE in their asset management. Building on the panel input, this study suggests potential enablers to overcome these barriers, such as CE legislation, best practice case studies, commitment and support from the top management, and the creation of a clear business case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.