The photolysis of diclofenac (DCF), sulfamethoxazole (SMX), carbamazepine (CBZ), and trimethoprim (TMP) was investigated using a low-pressure (LP) mercury ultraviolet (UV) lamp (254nm) and a combination of UV with hydrogen peroxide (H 2 O 2). For each experiment, 5mg/L of each pharmaceutical was prepared in pure water and individually degraded by either UV alone or UV/H 2 O 2. DCF and SMX were highly susceptible to UV treatment and completely degraded to below their LC-MS detection limit (1μg/L) after only 8min of UV irradiation. TMP and CBZ were more resistant to UV treatment, with only 58.2 and 25.2% degradation (after 1h UV exposure). The combination of H 2 O 2 addition (up to 0.2g/L) with UV significantly improved the removal rate of TMP and CBZ up to 91.2 and 99.7% of the initial concentration, respectively. A number of novel transformation compounds were identified as UV or UV/H 2 O 2 degradation products using LC-MS. The range and amount of these transformation compounds strongly depended on the applied treatment conditions. The toxicity of each pharmaceutical solution before and after treatment was also evaluated and all parent compounds were non-toxic at the tested concentration (i.e. 5mg/L). DCF, in particular, but also CBZ and SMX, showed an increase in solution toxicity after treatment with UV only, indicating the presence of photolytic degradation products that are more toxic than the parent compounds. Treatment with UV/H 2 O 2 reduced the toxicity of all solutions to below the detection limit of the assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.