This paper addresses the squeezed flow of third grade fluid between two parallel disks. Heat transfer in present flow is characterized by Cattaneo–Christov theory. Thermal relaxation time effects on the boundary layer is examined. Suitable transformations are invoked for a system of ordinary differential equations. Convergent series solutions are thus obtained using homotopic approach. Influences of different parameters on the velocity and temperature profile are discussed.
Influence of magnetohydrodynamic (MHD) flow between two parallel disks is considered. Heat transfer analysis is disclosed due to thermal radiation and convective boundary condition. Appropriate transformations are invoked to obtain the ordinary differential system. This system is solved using homotopic approach. Convergence of the obtained solution is discussed. Variations of embedded parameters into the governing problems are graphically discussed. Skin friction coefficient and Nusselt number are numerically computed and analyzed. It is noticed that temperature profile is increasing function of radiation parameter.
α-Glucosidase is considered a prime drug target for Diabetes Mellitus and its inhibitors are used to delay carbohydrate digestion for the treatment of diabetes mellitus. With the aim to design α-glucosidase inhibitors with novel chemical scaffolds, three folds ligand and structure based virtual screening was applied. Initially linear quantitative structure activity relationship (QSAR) model was developed by a molecular operating environment (MOE) using a training set of thirty-two known inhibitors, which showed good correlation coefficient (r2 = 0.88), low root mean square error (RMSE = 0.23), and cross-validated correlation coefficient r2 (q2 = 0.71 and RMSE = 0.31). The model was validated by predicting the biological activities of the test set which depicted r2 value of 0.82, indicating the robustness of the model. For virtual screening, compounds were retrieved from zinc is not commercial (ZINC) database and screened by molecular docking. The best docked compounds were chosen to assess their pharmacokinetic behavior. Later, the α-glucosidase inhibitory potential of the selected compounds was predicted by their mode of binding interactions. The predicted pharmacokinetic profile, docking scores and protein-ligand interactions revealed that eight compounds preferentially target the catalytic site of α-glucosidase thus exhibit potential α-glucosidase inhibition in silico. The α-glucosidase inhibitory activities of those Hits were predicted by QSAR model, which reflect good inhibitory activities of these compounds. These results serve as a guidelines for the rational drug design and development of potential novel anti-diabetic agents.
Research on optimization of entropy generation in nanofluid flow gained much interest. In this study, the Walter's-B nanofluid flow is considered to analyze the irreversibility in cubic autocatalysis. Fluid motion is considered in presence of viscous dissipation, magnetohydrodynamics (MHD), radiation, and heat generation absorption. Homotopy analysis method (HAM) is employed to solve nonlinear ordinary differential system. Results show that fluid flow reduces for larger Weissenberg and Hartman numbers. Temperature gradually enhances for larger Weissenberg number and radiation parameter. For higher estimation of thermophoresis parameter, the temperature and concentration are enhanced. Opposite impact of Hartman and Weissenberg numbers is noticed for entropy generation and Bejan number. Disorderedness and Bejan number are reduced near the sheet, while the opposite trend is seen away from the sheet.
This study explores mixed convection ow of tangent hyperbolic liquid over stretching sheet. Joule heating, double strati cation, non-linear thermal radiation, Brownian motion, and thermophoresis were presented. The phenomenon of mass transfer was examined by activation energy along with binary chemical. Computations of convergent solutions were carried out for the nonlinear mathematical system. Graphical representation was employed to illustrate the outcome of sundry variables on velocity, temperature, and concentration of nanoparticles. Moreover, Nusselt number, coe cient of drag force, and mass transfer rate were examined. It was observed that velocity decreases at a larger Weissenberg number. Concentration of uid was enhanced in the case of higher activation energy parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.