Biomarkers of acute kidney injury are influenced by the magnitude of hyperthermia and hypovolemia elicited by exercise in the heat.
We tested the hypotheses that thermoregulatory behavior is initiated before changes in blood pressure and that skin blood flow upon the initiation of behavior is reflex mediated. Ten healthy young subjects moved between 40 C and 17 C rooms when they felt 'too warm' (W!C) or 'too cool' (C!W). Blood pressure, cardiac output, skin and rectal temperatures were measured. Changes in skin blood flow between locations were not different at 2 forearm locations. One was clamped at 34 C ensuring responses were reflex controlled. The temperature of the other was not clamped ensuring responses were potentially local and/or reflex controlled. Relative to pre-test Baseline, skin temperature was not different at C!W (33.5 § 0.7 C, P D 0.24), but was higher at W!C (36.1 § 0.5 C, P < 0.01). Rectal temperature was different from Baseline at C!W (¡0.2 § 0
We tested the hypothesis that increases in blood pressure are sustained throughout 15 min of face cooling. Two independent trials were carried out. In the Face-Cooling Trial, 10 healthy adults underwent 15 min of face cooling where a 2.5-liter bag of ice water (0 ± 0°C) was placed over their cheeks, eyes, and forehead. The Sham Trial was identical except that the temperature of the water was 34 ± 1°C. Primary dependent variables were forehead temperature, mean arterial pressure, and forearm vascular resistance. The square root of the mean of successive differences in R-R interval (RMSSD) provided an index of cardiac parasympathetic activity. In the Face Cooling Trial, forehead temperature fell from 34.1 ± 0.9°C at baseline to 12.9 ± 3.3°C at the end of face cooling ( P < 0.01). Mean arterial pressure increased from 83 ± 9 mmHg at baseline to 106 ± 13 mmHg at the end of face cooling ( P < 0.01). RMSSD increased from 61 ± 40 ms at baseline to 165 ± 97 ms during the first 2 min of face cooling ( P ≤ 0.05), but returned to baseline levels thereafter (65 ± 49 ms, P ≥ 0.46). Forearm vascular resistance increased from 18.3 ± 4.4 mmHg·ml−1·100 g tissue−1·min at baseline to 26.6 ± 4.0 mmHg·ml−1·100 g tissue−1·min at the end of face cooling ( P < 0.01). There were no changes in the Sham Trial. These data indicate that increases in blood pressure are sustained throughout 15 min of face cooling, and face cooling elicits differential time-dependent parasympathetic and likely sympathetic activation.
New Findings r What is the central question of this study?Do increases in metabolic heat production and sweat rate precede the initiation of thermoregulatory behaviour in resting humans exposed to cool and warm environments? r What is the main finding and its importance?Thermoregulatory behaviour at rest in cool and warm environments is preceded by changes in vasomotor tone in glabrous and non-glabrous skin, but not by acute increases in metabolic heat production or sweat rate. These findings suggest that sweating and shivering are not obligatory for thermal behaviour to be initiated in humans.We tested the hypothesis that acute increases in metabolic heat production and sweating precede the initiation of thermoregulatory behaviour in resting humans exposed to cool and warm environments. Twelve healthy young subjects passively moved between 17 and 40°C rooms when they felt 'too cool' (C→W) or 'too warm' (W→C). Skin and internal (intestinal) temperatures, metabolic heat production, local sweat rate (forearm and chest) and cutaneous vascular conductance (CVC; forearm and fingertip) were measured continually. Compared with pretest baseline (31.8 ± 0.3°C), skin temperature was higher at C→W (32.0 ± 0.7°C; P = 0.01) and W→C (34.5 ± 0.5°C; P < 0.01). Internal temperature did not differ (P = 0.12) between baseline (37.2 ± 0.3°C), C→W (37.2 ± 0.3°C) and W→C (37.0 ± 0.3°C). Metabolic heat production was not different from baseline (40 ± 9 W m −2 ) at C→W (39 ± 7 W m −2 ; P = 0.50). Forearm (0.06 ± 0.01 mg cm −2 min −1 ) and chest (0.04 ± 0.02 mg cm −2 min −1 ) sweat rate at W→C did not differ from baseline (forearm, 0.05 ± 0.02 mg cm −2 min −1 and chest, 0.04 ± 0.02 mg cm −2 min −1 ; P ࣙ 0.23). Forearm CVC was not different from baseline (0.30 ± 0.21 perfusion units (PU) mmHg −1 ) at C→W (0.24 ± 0.11 PU mmHg −1 ; P = 0.17), but was higher at W→C (0.65 ± 0.33 PU mmHg −1 ; P < 0.01). Fingertip CVC was different from baseline (2.6 ± 2.0 PU mmHg −1 ) at C→W (0.70 ± 0.42 PU mmHg −1 ; P < 0.01) and W→C (4.49 ± 1.66 PU mmHg −1 ; P < 0.01). Thermoregulatory behaviour at rest in cool and warm environments is preceded by changes in vasomotor tone in glabrous and non-glabrous skin, but not by acute increases in metabolic heat production or sweat rate.
Carbon dioxide (CO2) retention occurs during water immersion, but it is not known if peripheral chemosensitivity is altered during water immersion, which could contribute to CO2 retention. We tested the hypothesis that peripheral chemosensitivity to hypercapnia and hypoxia is blunted during 2 h of thermoneutral head out water immersion (HOWI) in healthy young adults. Peripheral chemosensitivity was assessed by the ventilatory, heart rate, and blood pressure responses to hypercapnia and hypoxia at baseline, 10, 60, 120 min, and post HOWI and a time‐control visit (control). Subjects inhaled 1 breath of 13% CO2, 21% O2, and 66% N2 to test peripheral chemosensitivity to hypercapnia and 2–6 breaths of 100% N2 to test peripheral chemosensitivity to hypoxia. Each gas was administered four separate times at each time point. Partial pressure of end‐tidal CO2 (PETCO2), arterial oxygen saturation (SpO2), ventilation, heart rate, and blood pressure were recorded continuously. Ventilation was higher during HOWI versus control at post (P = 0.037). PETCO2 was higher during HOWI versus control at 10 min (46 ± 2 vs. 44 ± 2 mmHg), 60 min (46 ± 2 vs. 44 ± 2 mmHg), and 120 min (46 ± 3 vs. 43 ± 3 mmHg) (all P < 0.001). Ventilatory (P = 0.898), heart rate (P = 0.760), and blood pressure (P = 0.092) responses to hypercapnia were not different during HOWI versus control at any time point. Ventilatory (P = 0.714), heart rate (P = 0.258), and blood pressure (P = 0.051) responses to hypoxia were not different during HOWI versus control at any time point. These data indicate that CO2 retention occurs during thermoneutral HOWI despite no changes in peripheral chemosensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.