Twelve hydrogen-bonded complexes of glycine and hydrogen cyanide have been studied using high-level quantum-chemical calculations in gas phase. In particular, six 1:1 glycine-HCN dimers and six 1:2 glycine-HCN trimers have been considered. Besides the characteristics of the hydrogen bonds and their effect on molecular structure and energetics, several molecular electric properties have been calculated utilising two different models: MP2/6-31 ++ G(d,p) and DFT-B3LYP/6-31 ++ G(d,p). Although the structural parameters calculated by the two models are similar, equilibrium electronic energies of the clusters show model dependence. The lowest energy dimer is same in both the models which is ca. 3.0 kcal/mol more stable than the highest energy dimer. However, the lowest energy trimer is different in two methods. The energetic difference of stability between the highest and lowest trimer is 4.2 kcal/mol (4.4 kcal/mol) at an MP2 (B3LYP) level of calculation. The bond angles of glycine, in particular, are quite sensitive to the hydrogen-bond formation. Four out of six trimers are found to be strongly cooperative in both the models. Significant changes of dipole moments and polarisabilities of isolated glycine and hydrogen cyanide are observed due to the formation of hydrogen bonding. The Rayleigh scattering intensities of all clusters are much larger than those of their constituent monomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.