Zero dimensional graphene quantum dots (GQDs) exhibit interesting physical and chemical properties due to the edge effect and quantum confinement. As the number of carbon atoms in edge is more than on basal plane, GQDs are more reactive. Room temperature XRD pattern confirms the formation of the GQDs. UV-Visible spectra confirm that GQDs show optical absorption in the visible region. The emission peaks in the photoluminescence spectra are red shifted with the increase of excitation wavelength. Dynamic light scattering (DLS) analysis shows that the average size of the particles is found to be ~65 nm. The frequency dependent electrical transport properties of the GQDs are investigated in a temperature range from 300 to 500 K. Most interestingly, for the first time, the insulator to semiconductor transition of GQD is observed near 400K. The transition mechanism of GQD is discussed with detailed dielectric analysis. The effects of intercalated water on temperature dependent conductivity are clearly discussed. The dielectric relaxation mechanism is explained in the framework of permittivity, conductivity and impedance formalisms. The frequency dependent ac conductivity spectra follows the Jonscher's universal power law. Cole-Cole model is used to investigate the dielectric relaxation mechanism in the sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.