The world is witnessing a transformation from the conventional electrical grid into the smart grid. The smart grid can provide an effective solution to alarming problems associated with a conventional grid with increased reliability, efficiency, and sustainability. Integration of distributed energy resources (DERs) comprising of renewable energy sources (RESs) is a vital component of the smart grid. DERs not only can provide a viable solution for environmental concerns arising due to conventional fossil fuel-based plants, but can also contribute towards the system reliability. However, the integration of DERs is associated with several challenges. Thus, the successful deployment of DERs in smart grid framework calls for a comprehensive analysis. This paper presents an exhaustive review of various challenges associated with increased penetration of DERs. An organized classification of various technical challenges along with their mitigation measures has been critically reviewed. Smart inverters equipped with advanced control structure are emerging as a potential solution to address these challenges effectively. Hence, a review of smart inverter along with its functional capabilities has also been discussed in this paper.
This paper presents a novel bi-level multi-objective model for planning solar PV-battery storage (PV-BS) based DERs in Smart grid distribution system (SGDS). The planning of Solar PV and battery storage (BS) in the distribution system presents severe complexities for the system planner due to their inherent attributes. The detailed analysis considering all three planning aspects, namely technical, economics, and environmental is presented, assisting in the efficient and reliable planning operation. The four test cases are formed based upon the life cycle cost, unserved energy, penetration level, and social welfare. The level-1 proceeds with evaluating the DERs sizing along with penetration level and serves as an input to level-2, for computing the optimal placement for DERs. The proposed model is implemented on the IEEE-33 bus distribution system and solved using Butterfly-PSO (BF-PSO) algorithm. The detailed parametric and sensitivity analysis presented may aid the system planners in terms of planning preview. The simulation results validate the effectiveness of the proposed work by showing significant improvement in bus voltage profiles (upto 4%) and reduction in total power losses (upto 45%). The highest penetration level is observed for Case 2 (70%), which also corresponds to the highest LCC (k$ 147094) and thus results in the lowest emission cost (k$ 4920).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.