NK T cells are a unique lymphocyte population that have developmental requirements distinct from conventional T cells. Mice lacking the tyrosine kinase Fyn have 5- to 10-fold fewer mature NK T cells. This study shows that Fyn-deficient mice have decreased numbers of NK1.1− NK T cell progenitors as well. 5-Bromo-2′-deoxyuridine-labeling studies indicate that the NK T cells remaining in fyn−/− mice exhibit a similar turnover rate as wild-type cells. The fyn−/− NK T cells respond to α-galactosylceramide, a ligand recognized by NK T cells, and produce cytokines, but have depressed proliferative capacity. Transgenic expression of the NK T cell-specific TCR α-chain Vα14Jα18 leads to a complete restoration of NK T cell numbers in fyn−/− mice. Together, these results suggest that Fyn may have a role before α-chain rearrangement rather than for positive selection or the peripheral upkeep of cell number. NK T cells can activate other lymphoid lineages via cytokine secretion. These secondary responses are impaired in Fyn-deficient mice, but occur normally in fyn mutants expressing the Vα14Jα18 transgene. Because this transgene restores NK T cell numbers, the lack of secondary lymphocyte activation in the fyn-mutant mice is due to the decreased numbers of NK T cells present in the mutant, rather than an intrinsic defect in the ability of the other fyn−/− lymphoid populations to respond.
Recycled aggregates consist of crushed, graded inorganic particles processed from the material that have been used in the constructions and demolition debris. The target of the present thesis work is to determine the strength characteristic of recycled aggregates for the application in concrete pavement construction. The scope of the thesis is to determine and compare the compressive strength, flexural strength and sulphate resistance of concrete by using different percentages of recycled aggregates. The investigation was carried out by using workability test, compressive strength test, flexural strength test and sulphate resistance test. A total of five mixes with replacement of coarse aggregates with 0%, 10%, 20%, 30% and 40% recycled coarse aggregates were studied. The water cement ratio was kept constant at 0.38. It was observed that workability of concrete was decreased with the increase in recycled aggregates in concrete. For the strength characteristics, the results showed that the strengths of recycled aggregate concrete were comparable to the strengths of natural aggregates concrete. I.
Recycled aggregates consist of crushed, graded inorganic particles processed from the material that have been used in the constructions and demolition debris. The target of the present thesis work is to determine the strength characteristic of recycled aggregates for the application in concrete pavement construction. The scope of the thesis is to determine and compare the compressive strength, flexural strength and sulphate resistance of concrete by using different percentages of recycled aggregates. The investigation was carried out by using workability test, compressive strength test, flexural strength test and sulphate resistance test. A total of five mixes with replacement of coarse aggregates with 0%, 10%, 20%, 30% and 40% recycled coarse aggregates were studied. The water cement ratio was kept constant at 0.38. It was observed that workability of concrete was decreased with the increase in recycled aggregates in concrete. For the strength characteristics, the results showed that the strengths of recycled aggregate concrete were comparable to the strengths of natural aggregates concrete. I.
The thrust nowadays is to produce thinner and green pavement sections of better quality, which can carry the heavy loads. The high strength steel fibre reinforced concrete is a concrete having compressive strength greater than 40MPa, made of hydraulic cements and containing fine and coarse aggregates; and discontinuous, unconnected, randomly distributed steel fibres. The present study aims at, developing pavement quality concrete mixtures incorporating marble dust as partial replacement of cement as well as steel fibres. The aim is to the design of slab thickness of PQC pavement using the achieved flexural strength of the concrete mixtures. In this study, the flexural, compressive and split tensile strength for pavement quality concrete mixtures for different percentage of steel fibres and replacement of cement with marble dust are reported. It is found out the maximum increase in flexure strength, compressive strength and split tensile strength is for 0% Marble Dust and 1% Steel fibre. Also it has been possible to achieve savings in cement by replacing it with marble dust and adding fibres. This study also shows that in view of the high flexural strength, high values of compressive strength and high values of split tensile strength, higher load carrying capacity and higher life expectancy, the combination of 10 to 20% marble dust replacement along with addition of 0.5 to 1% steel fibres is ideal for design of Pavement Quality Concrete (PQC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.